Iterative optimization of quantum error correcting codes

被引:72
作者
Reimpell, M [1 ]
Werner, RF [1 ]
机构
[1] Tech Univ Braunschweig, Inst Math Phys, D-38106 Braunschweig, Germany
关键词
D O I
10.1103/PhysRevLett.94.080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a convergent iterative algorithm for finding the optimal coding and decoding operations for an arbitrary noisy quantum channel. This algorithm does not require any error syndrome to be corrected completely, and hence also finds codes outside the usual Knill-Laflamme definition of error correcting codes. The iteration is shown to improve the figure of merit "channel fidelity" in every step.
引用
收藏
页数:4
相关论文
共 10 条
[1]   On quantum fidelities and channel capacities [J].
Barnum, H ;
Knill, E ;
Nielsen, MA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1317-1329
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]  
Buzek V, 1999, PHYS REV A, V60, pR2626, DOI 10.1103/PhysRevA.60.R2626
[4]   General teleportation channel, singlet fraction, and quasidistillation [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW A, 1999, 60 (03) :1888-1898
[5]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[6]   Perfect quantum error correcting code [J].
Laflamme, R ;
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :198-201
[7]   Sending entanglement through noisy quantum channels [J].
Schumacher, B .
PHYSICAL REVIEW A, 1996, 54 (04) :2614-2628
[8]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[9]   Error correcting codes in quantum theory [J].
Steane, AM .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :793-797
[10]   Stabilizing quantum information [J].
Zanardi, P .
PHYSICAL REVIEW A, 2001, 63 (01) :012301-012301