Parameter identification of a cage induction motor using particle swarm optimization

被引:14
作者
Nikranajbar, A. [1 ]
Ebrahimi, M. K. [1 ]
Wood, A. S. [1 ]
机构
[1] Univ Bradford, Sch Engn, Bradford BD7 1DP, W Yorkshire, England
关键词
particle swarm optimization; induction machine; parameter identification; swarm intelligence; evolutionary algorithms;
D O I
10.1243/09596518JSCE840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The current paper presents an adaptive system identification/parameter estimation algorithm for a three-phase cage induction motor based on particle swarm optimization (PSO). The performance of the proposed algorithm is emphasized by comparing its results with those of the well-known stochastic optimization techniques of genetic algorithm (GA) and simulated annealing ( SA) for the benchmark application with six unknown parameters to identify. The dynamic inertia-weighted PSO algorithm significantly outperformed the GA and SA techniques. The achievement of the presented methodology in confronting a rather complicated non-linear dynamic engineering application underlines the ability of the algorithm to be used for a range of real-world problems, and moreover justifies and motivates the development of more advanced techniques.
引用
收藏
页码:479 / 491
页数:13
相关论文
共 18 条
  • [1] [Anonymous], 1999, SYSTEM IDENTIFICATIO
  • [2] [Anonymous], 2005, FUNDAMENTALS COMPUTA
  • [3] A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications
    Alec Banks
    Jonathan Vincent
    Chukwudi Anyakoha
    [J]. Natural Computing, 2008, 7 (1) : 109 - 124
  • [4] Bocaniala CD, 2006, ADV INFO KNOW PROC, P1
  • [5] Particle swarm optimization: Basic concepts, variants and applications in power systems
    del Valle, Yamille
    Venayagamoorthy, Ganesh Kumar
    Mohagheghi, Salman
    Hernandez, Jean-Carlos
    Harley, Ronald G.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (02) : 171 - 195
  • [6] Dong CJ, 2006, INT J COMPUT SCI NET, V6, P152
  • [7] Comparison among five evolutionary-based optimization algorithms
    Elbeltagi, E
    Hegazy, T
    Grierson, D
    [J]. ADVANCED ENGINEERING INFORMATICS, 2005, 19 (01) : 43 - 53
  • [8] Engelbrecht A. P., 2007, COMPUTATIONAL INTELL, P289
  • [9] JIAO B, 2006, CHAOS SOLITON FRACT, V37, P698
  • [10] Adaptive nonlinear system identification using comprehensive learning PSO
    Katari, Venkatesh
    Malireddi, Satish
    Bendapudi, Satya Kanth S.
    Panda, G.
    [J]. 2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 434 - +