Formation of wurtzite sections in self-catalyzed GaP nanowires by droplet consumption

被引:13
作者
Fedorov, V. V. [1 ,2 ]
Dvoretckaia, L. N. [1 ]
Kirilenko, D. A. [3 ]
Mukhin, I. S. [1 ,4 ]
Dubrovskii, V. G. [5 ]
机构
[1] Alferov Univ, Nanotechnol Res & Educ Ctr, Russian Acad Sci, Khlopina 8-3, St Petersburg 194021, Russia
[2] Peter Great St Petersburg Polytech Univ, Inst Phys Nanotechnol & Telecommun, Politekhnicheskaya 29, St Petersburg 195251, Russia
[3] Ioffe Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia
[4] ITMO Univ, Sch Photon, Kronverksky Prospekt 49, St Petersburg 197101, Russia
[5] St Petersburg State Univ, Fac Phys, Univ Skaya Emb 13B, St Petersburg 199034, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
GaP nanowires; wurtzite phase; contact angle; Ga diffusion; CONTACT-ANGLE; GROWTH; SILICON; BEHAVIOR;
D O I
10.1088/1361-6528/ac20fe
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Wurtzite GaP nanowires are interesting for the direct bandgap engineering and can be used as templates for further growth of hexagonal Si shells. Most wurtzite GaP nanowires have previously been obtained with Au catalysts. Here, we show that long (similar to 500 nm) wurtzite sections are formed in the top parts of self-catalyzed GaP nanowires grown by molecular beam epitaxy on Si(111) substrates in the droplet consumption stage, which is achieved by abruptly increasing the atomic V/III flux ratio from 2 to 3. We investigate the temperature dependence of the length of wurtzite sections and show that the longest sections are obtained at 610 degrees C. A supporting model explains the observed trends using a phase diagram of GaP nanowires, where the wurtzite phase is formed within a certain range of the droplet contact angles. The optimal growth temperature for growing wurtzite nanowires corresponds to the largest diffusion length of Ga adatoms, which helps to maintain the required contact angle for the longest time.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Optical response of wurtzite and zinc blende GaP nanowire arrays [J].
Aghaeipour, Mahtab ;
Anttu, Nicklas ;
Nylund, Gustav ;
Berg, Alexander ;
Lehmann, Sebastian ;
Pistol, Mats-Erik .
OPTICS EXPRESS, 2015, 23 (23) :30177-30187
[2]   Exploring Crystal Phase Switching in GaP Nanowires [J].
Assali, S. ;
Gagliano, L. ;
Oliveira, D. S. ;
Verheijen, M. A. ;
Plissard, S. R. ;
Feiner, L. F. ;
Bakkers, E. P. A. M. .
NANO LETTERS, 2015, 15 (12) :8062-8069
[3]   Direct Band Gap Wurtzite Gallium Phosphide Nanowires [J].
Assali, S. ;
Zardo, I. ;
Plissard, S. ;
Kriegner, D. ;
Verheijen, M. A. ;
Bauer, G. ;
Meijerink, A. ;
Belabbes, A. ;
Bechstedt, F. ;
Haverkort, J. E. M. ;
Bakkers, E. P. A. M. .
NANO LETTERS, 2013, 13 (04) :1559-1563
[4]   Electronic bands of III-V semiconductor polytypes and their alignment [J].
Belabbes, Abderrezak ;
Panse, Christian ;
Furthmueller, Juergen ;
Bechstedt, Friedhelm .
PHYSICAL REVIEW B, 2012, 86 (07)
[5]   Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching [J].
Berg, Alexander ;
Lehmann, Sebastian ;
Vainorius, Neimantas ;
Gustafsson, Anders ;
Pistol, Mats-Erik ;
Wallenberg, L. Reine ;
Samuelson, Lars ;
Borgstrom, Magnus T. .
JOURNAL OF CRYSTAL GROWTH, 2014, 386 :47-51
[6]   Growth and Characterization of GaP/GaPAs Nanowire Heterostructures with Controllable Composition [J].
Bolshakov, Alexey D. ;
Fedorov, Vladimir V. ;
Sibirev, Nikolai, V ;
Fetisova, Marina, V ;
Moiseev, Eduard, I ;
Kryzhanovskaya, Natalia, V ;
Koval, Olga Yu ;
Ubyivovk, Evgeniy, V ;
Mozharov, Alexey M. ;
Cirlin, George E. ;
Mukhin, Ivan S. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2019, 13 (11)
[7]   Effective Suppression of Antiphase Domains in GaP(N)/GaP Heterostructures on Si(001) [J].
Bolshakov, Alexey D. ;
Fedorov, Vladimir V. ;
Koval, Olga Yu ;
Sapunov, Georgiy A. ;
Sobolev, Maxim S. ;
Pirogov, Evgeniy, V ;
Kirilenko, Demid A. ;
Mozharov, Alexey M. ;
Mukhin, Ivan S. .
CRYSTAL GROWTH & DESIGN, 2019, 19 (08) :4510-4520
[8]   Polytype formation in GaAs/GaP axial nanowire heterostructures [J].
Boulanger, Jonathan P. ;
LaPierre, Ray R. .
JOURNAL OF CRYSTAL GROWTH, 2011, 332 (01) :21-26
[9]   Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Suris, R. A. ;
Cirlin, G. E. ;
Harmand, J. C. ;
Ustinov, V. M. .
SURFACE SCIENCE, 2007, 601 (18) :4395-4401
[10]   Development of Growth Theory for Vapor Liquid Solid Nanowires: Contact Angle, Truncated Facets, and Crystal Phase [J].
Dubrovskii, V. G. .
CRYSTAL GROWTH & DESIGN, 2017, 17 (05) :2544-2548