The Dirichlet problem at the Martin boundary of a fine domain

被引:2
|
作者
El Kadiri, Mohamed [1 ]
Fuglede, Bent [2 ]
机构
[1] Univ Mohammed 5, Dept Math, Fac Sci, BP 1014, Rabat, Morocco
[2] Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
关键词
Fine topology; Finely harmonic functions; Finely superharmonic functions; Fine Green kernel; Martin boundary; Dirichlet problem; INTEGRAL-REPRESENTATION; RIESZ-DECOMPOSITION;
D O I
10.1016/j.jmaa.2017.07.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We adapt the Perron-Wiener-Brelot method of solving the Dirichlet problem at the Martin boundary of a Euclidean domain so as to cover also the Dirichlet problem at the Martin boundary of a fine domain U in R-n (n >= 2) (i.e., a set U which is open and connected in the H. Cartan fine topology on R (n) , the coarsest topology in which all superharmonic functions are continuous). It is a complication that there is no Harnack convergence theorem for so-called finely harmonic functions. We define resolutivity of a numerical function on the Martin boundary delta(U) of U. Our main result Theorem 4.14 implies the corresponding known result for the classical case. We also obtain analogous results for the case where the upper and lower PWB-classes are defined in terms of the minimal-fine topology on the Riesz-Martin space (U)over bar = U boolean OR delta(U) instead of the natural topology. The two corresponding concepts of resolutivity are compatible. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:179 / 199
页数:21
相关论文
共 50 条
  • [1] Sweeping at the Martin Boundary of a Fine Domain
    El Kadiri, Mohamed
    Fuglede, Bent
    POTENTIAL ANALYSIS, 2016, 44 (02) : 401 - 422
  • [2] Sweeping at the Martin Boundary of a Fine Domain
    Mohamed El Kadiri
    Bent Fuglede
    Potential Analysis, 2016, 44 : 401 - 422
  • [3] Martin Boundary of a Fine Domain and a Fatou-Naim-Doob Theorem for Finely Superharmonic Functions
    El Kadiri, Mohamed
    Fuglede, Bent
    POTENTIAL ANALYSIS, 2016, 44 (01) : 1 - 25
  • [4] A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary
    Bonnaillie-Noel, Virginie
    Dalla Riva, Matteo
    Dambrine, Marc
    Musolino, Paolo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 211 - 267
  • [5] Localization of Eigenfunctions of the Dirichlet Problem near a Contour at the Boundary of a Thin Domain
    S. A. Nazarov
    Differential Equations, 2024, 60 (12) : 1719 - 1739
  • [6] DIRICHLET PROBLEM IN AN ANGULAR DOMAIN WITH RAPIDLY OSCILLATING BOUNDARY: MODELING OF THE PROBLEM AND ASYMPTOTICS OF THE SOLUTION
    Nazarov, S. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (02) : 297 - 326
  • [7] Martin Boundary of a Fractal Domain
    Hiroaki Aikawa
    Torbjörn Lundh
    Tomohiko Mizutani
    Potential Analysis, 2003, 18 : 311 - 357
  • [8] Martin boundary of a fractal domain
    Aikawa, H
    Lundh, T
    Mizutani, T
    POTENTIAL ANALYSIS, 2003, 18 (04) : 311 - 357
  • [9] The Dirichlet problem in a domain with a slit
    Subbotin, Yu. N.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (01): : 208 - 221
  • [10] The Dirichlet problem in a domain with a slit
    Chernykh, N. I.
    Subbotin, Yu. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 266 : S103 - S117