LANDMARK-BASED LARGE-SCALE SPARSE SUBSPACE CLUSTERING METHOD FOR HYPERSPECTRAL IMAGES

被引:0
作者
Huang, Shaoguang [1 ]
Zhang, Hongyan [2 ]
Pizurica, Aleksandra [1 ]
机构
[1] Univ Ghent, Dept Telecommun & Informat Proc, TELIN GAIM, Ghent, Belgium
[2] Wuhan Univ, State Key Lab Inform Engn Surveying Mapping & Rem, Wuhan, Peoples R China
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Sparse subspace clustering; landmark; hyperspectral image; large-scale data;
D O I
10.1109/igarss.2019.8898869
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Sparse subspace clustering (SSC) has achieved the state-of-the-art performance in the clustering of hyperspectral images (HSIs). However, the high computational complexity and sensitivity to noise limit its clustering performance. In this paper, we propose a scalable SSC method for the large-scale HSIs, which significantly accelerates the clustering speed of SSC without sacrificing clustering accuracy. A small landmark dictionary is first generated by applying k-means to the original data, which results in the significant reduction of the number of optimization variables in terms of sparse matrix. In addition, we incorporate spatial regularization based on total variation (TV) and improve this way strongly robustness to noise. A landmark-based spectral clustering method is applied to the obtained sparse matrix, which further improves the clustering speed. Experimental results on two real HSIs demonstrate the effectiveness of the proposed method and the superior performance compared to both traditional SSC-based methods and the related large-scale clustering methods.
引用
收藏
页码:799 / 802
页数:4
相关论文
共 14 条
[1]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[2]   Large Scale Spectral Clustering Via Landmark-Based Sparse Representation [J].
Cai, Deng ;
Chen, Xinlei .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (08) :1669-1680
[3]   Sparse Subspace Clustering: Algorithm, Theory, and Applications [J].
Elhamifar, Ehsan ;
Vidal, Rene .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2765-2781
[4]   Semisupervised Sparse Subspace Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images [J].
Huang, Shaoguang ;
Zhang, Hongyan ;
Pizurica, Aleksandra .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) :989-999
[5]  
Huang SG, 2018, IEEE IMAGE PROC, P3878, DOI 10.1109/ICIP.2018.8451277
[6]  
Liu W., 2010, P 27 INT C MACH LEAR, P679, DOI DOI 10.1007/s11263-007-0090-8
[7]  
Lovasz L., 2009, Matching theory
[8]   Scalable Sparse Subspace Clustering [J].
Peng, Xi ;
Zhang, Lei ;
Yi, Zhang .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :430-437
[9]   Sketched Subspace Clustering [J].
Traganitis, Panagiotis A. ;
Giannakis, Georgios B. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (07) :1663-1675
[10]   A tutorial on spectral clustering [J].
von Luxburg, Ulrike .
STATISTICS AND COMPUTING, 2007, 17 (04) :395-416