Enhanced Vote Network for 3D Object Detection in Point Clouds

被引:0
|
作者
Zhong, Min [1 ]
Zeng, Gang [1 ]
机构
[1] Peking Univ, Key Lab Machine Percept, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICPR48806.2021.9412216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we aim to estimate 3D bounding boxes by voting to object centers and then groups and aggregates the votes to generate 3D box proposals and semantic classes of objects. However, due to the sparse and unstructured nature of the point clouds, we face some challenges when directly predicting bounding box from the vote feature: the sparse vote feature may lack some necessary semantic and context information. To address the challenges, we propose a vote feature enhancement network that aims to encode semantic-aware information and aggravate global context for the vote feature. Specifically, we learn the point-wise semantic information and supplement it to the vote feature, and we also encode the pairwise relations to collect the global context. Experiments on two large datasets of real 3D scans, ScanNet and SUN RGB-D, demonstrate that our method can achieve excellent 3D detection results.
引用
收藏
页码:6624 / 6631
页数:8
相关论文
共 50 条
  • [1] Optimisation of the PointPillars network for 3D object detection in point clouds
    Stanisz, Joanna
    Lis, Konrad
    Kryjak, Tomasz
    Gorgon, Marek
    2020 SIGNAL PROCESSING - ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2020, : 122 - 127
  • [2] Learning Deformable Network for 3D Object Detection on Point Clouds
    Zhang, Wanyi
    Fu, Xiuhua
    Li, Wei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [3] Relation Graph Network for 3D Object Detection in Point Clouds
    Feng, Mingtao
    Gilani, Syed Zulqarnain
    Wang, Yaonan
    Zhang, Liang
    Mian, Ajmal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 92 - 107
  • [4] A Hierarchical Graph Network for 3D Object Detection on Point Clouds
    Chen, Jintai
    Lei, Biwen
    Song, Qingyu
    Ying, Haochao
    Chen, Danny Z.
    Wu, Jian
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 389 - 398
  • [5] Mask-SL RCNN: Feature-Enhanced 3D Object Detection Network for Point Clouds
    Zhong, Yuanhong
    Yang, Guangxia
    Deng, Dihang
    Tang, Panliang
    Ren, Fan
    IEEE PHOTONICS JOURNAL, 2023, 15 (05):
  • [6] Exploiting Label Uncertainty for Enhanced 3D Object Detection From Point Clouds
    Sun, Yang
    Lu, Bin
    Liu, Yonghuai
    Yang, Zhenyu
    Behera, Ardhendu
    Song, Ran
    Yuan, Hejin
    Jiang, Haiyan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (06) : 6074 - 6089
  • [7] LSNet: Learned Sampling Network for 3D Object Detection from Point Clouds
    Wang, Mingming
    Chen, Qingkui
    Fu, Zhibing
    REMOTE SENSING, 2022, 14 (07)
  • [8] PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds
    Li, Jinyu
    Luo, Chenxu
    Yang, Xiaodong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17567 - 17576
  • [9] FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds
    Biao Liu
    Bihao Tian
    Hengyang Wang
    Junchao Qiao
    Zhi Wang
    Neural Processing Letters, 2022, 54 : 5063 - 5078
  • [10] GRNet: Geometric relation network for 3D object detection from point clouds
    Li, Ying
    Ma, Lingfei
    Tan, Weikai
    Sun, Chen
    Cao, Dongpu
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 165 : 43 - 53