Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway

被引:215
|
作者
Ye, Yingze [1 ,2 ]
Jin, Tong [3 ]
Zhang, Xu [3 ]
Zeng, Zhi [4 ]
Ye, Baixin [5 ]
Wang, Jinchen [3 ]
Zhong, Yi [3 ]
Xiong, Xiaoxing [1 ,3 ]
Gu, Lijuan [1 ,2 ]
机构
[1] Wuhan Univ, Renmin Hosp, Cent Lab, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ, Renmin Hosp, Dept Anesthesiol, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, Renmin Hosp, Dept Neurosurg, Wuhan, Hubei, Peoples R China
[4] Wuhan Univ, Renmin Hosp, Dept Pathol, Wuhan, Hubei, Peoples R China
[5] Wuhan Univ, Renmin Hosp, Dept Hematopathol, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
ischemic stroke; NLRP3; inflammasome; microglia; macrophage polarization; toll-like receptor 4; new therapies; BRAIN-INJURY; IN-VITRO; CONTROLLED-TRIAL; DOUBLE-BLIND; STROKE; RECEPTOR; MICROGLIA; INDIRUBIN; MICE; MACROPHAGES;
D O I
10.3389/fncel.2019.00553
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Ischemic stroke is a devastating disease with long-term disability. However, the pathogenesis is unclear and treatments are limited. Meisoindigo, a second-generation derivative of indirubin, has general water solubility and is well-tolerated. Previous studies have shown that meisoindigo reduces inflammation by inhibiting leukocyte chemotaxis and migration. In the present study, we investigated the hypothesis that meisoindigo was also protective against ischemic stroke, then evaluated its underlying mechanisms. In vivo, adult male C57BL/6J wild-type mice were used to produce a middle cerebral artery occlusion (MCAO) stroke model. On day three after reperfusion, obvious improvement in neurological scores, infarct volume reduction and cerebral edema amelioration were observed in meisoindigo treatment. Moreover, immunofluorescence staining and western-blot showed that the expression of NLRP3 inflammasome and its associated proteins in neurons and microglia was inhibited by meisoindigo. The effects of Meisoindigo on NLRP3 inflammasome inactivation and increased the M2 phenotype of microglia/macrophage through shifting from a M1 phenotype, which was possibly mediated by inhibition of TLR4/NF-kappa B. Furthermore, we verified the inhibitory effect of meisoindigo on TLR4/NF-kappa B signaling pathway, and found that meisoindigo treatment could significantly suppressed the expression of TLR4/NF-kappa B pathway-associated proteins in a dose-dependent manner, meanwhile, which resulted in downregulation of HMGB1 and IL-1 beta. Next, we established an in vitro oxygen glucose deprivation/Reperfusion (OGD/R) model in HT-22 and BV2 cells to simulate ischemic conditions. Cytotoxicity assay showed that meisoindigo substantially improved relative cell vitality and in HT-22 and BV2 cells following OGD/R in vitro. After suffering OGD/R, the TLR4/NF-kappa B pathway was activated, the expression of NLRP3 inflammasome-associated proteins and M1 microglia/macrophage were increased, but meisoindigo could inhibit above changes in both HT-22 and BV2 cells. Additionally, though lipopolysaccharide stimulated the activation of TLR4 signaling in OGD/R models, meisoindigo co-treatment markedly reversed the upregulation of TLR4 and following activation of NLRP3 inflammasome and polarization of M1 microglia/macrophages mediated by TLR4. Overall, we demonstrate for the first time that meisoindigo post-treatment alleviates brain damage induced by ischemic stroke in vivo and in vitro experiments through blocking activation of the NLRP3 inflammasome and regulating the polarization of microglia/macrophages via inhibition of the TLR4/NF-kappa B signaling pathway.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Modified Citrus Pectin Alleviates Cerebral Ischemia/Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation via TLR4/NF-?B Signaling Pathway in Microglia
    Cui, Yu
    Zhang, Nan-Nan
    Wang, Dan
    Meng, Wei-Hong
    Chen, Hui-Sheng
    JOURNAL OF INFLAMMATION RESEARCH, 2022, 15 : 3369 - 3385
  • [2] Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-ΚB signaling pathway
    Liu, Jie
    Ma, Wei
    Zang, Cheng-Hao
    Wang, Guo-Dong
    Zhang, Si-Jia
    Wu, Hong-Jie
    Zhu, Ke-Wei
    Xiang, Xiang-Lin
    Li, Chun-Yan
    Liu, Kuang-Pin
    Guo, Jian-Hui
    Li, Li-Yan
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (22)
  • [3] Qingda granule alleviates cerebral ischemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 signaling in microglia
    Cai, Qiaoyan
    Zhao, Chunyu
    Xu, Yaoyao
    Lin, Haowei
    Jia, Beibei
    Huang, Bin
    Lin, Shan
    Chen, Daxin
    Jia, Peizhi
    Wang, Meiling
    Lin, Wei
    Zhang, Ling
    Chu, Jianfeng
    Peng, Jun
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 324
  • [4] The effect of focal cerebral ischemia-reperfusion injury on TLR4 and NF-κB signaling pathway
    Chen, Jing
    Yang, Chenli
    Xu, Xiang
    Yang, Yonglin
    Xu, Bo
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 15 (01) : 897 - 903
  • [5] Calycosin Protects against Focal Cerebral Ischemia/Reperfusion Injury via Inhibiting the HMGB1/TLR4/NF-κB Signaling Pathway
    Wang, Yong
    Wang, Shifeng
    Zhang, Peng
    Xiao, Shengjun
    Shi, Huizhong
    Chen, Zihan
    PHARMACOGNOSY MAGAZINE, 2024, 20 (02) : 606 - 615
  • [6] TLR4 Enhances Cerebral Ischemia/Reperfusion Injury via Regulating NLRP3 Inflammasome and Autophagy
    Mao, Li
    Wu, Da-Hua
    Hu, Guo-Huang
    Fan, Jian-Hu
    MEDIATORS OF INFLAMMATION, 2023, 2023
  • [7] Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway
    Wang, Qin
    Lin, Ping
    Li, Peng
    Feng, Li
    Ren, Qian
    Xie, Xiaofeng
    Xu, Jing
    LIFE SCIENCES, 2017, 186 : 50 - 58
  • [8] Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway
    Juan Bu
    Shen Shi
    Hui-Qin Wang
    Xiao-Shan Niu
    Zong-Feng Zhao
    Wei-Dong Wu
    Xiao-Ling Zhang
    Zhi Ma
    Yan-Jun Zhang
    Hui Zhang
    Yi Zhu
    Neural Regeneration Research, 2019, 14 (04) : 605 - 612
  • [9] Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway
    Bu, Juan
    She, Shen
    Wang, Hui-Qin
    Niu, Xiao-Shan
    Zhao, Zong-Feng
    Wu, Wei-ong
    Zhang, Xiao-Ling
    Ma, Zhi
    Zhang, Yan-Jun
    Zhang, Hui
    Zhu, Yi
    NEURAL REGENERATION RESEARCH, 2019, 14 (04) : 605 - +
  • [10] Daphnetin Protects against Cerebral Ischemia/Reperfusion Injury in Mice via Inhibition of TLR4/NF-κB Signaling Pathway
    Liu, Jia
    Chen, Qianxue
    Jian, Zhihong
    Xiong, Xiaoxing
    Shao, Lingmin
    Jin, Tong
    Zhu, Xiqun
    Wang, Lei
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016