On the k-partition dimension of graphs

被引:22
作者
Estrada-Moreno, Alejandro [1 ]
机构
[1] Open Univ Catalonia, IN3, Comp Sci Dept, Av Carl Friedrich Gauss 5, Barcelona 08860, Spain
关键词
k-partition dimension; k-metric dimension; Partition dimension; Metric dimension; STRONG PRODUCT GRAPHS; SIMULTANEOUS METRIC DIMENSION; LEXICOGRAPHIC PRODUCT; RESOLVABILITY; CORONA; FAMILIES;
D O I
10.1016/j.tcs.2018.09.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As a generalization of the concept of the partition dimension of a graph, this article introduces the notion of the k-partition dimension. Given a nontrivial connected graph G = (V, E), a partition Pi of V is said to be a k-partition generator of G if any pair of different vertices u, v is an element of V is distinguished by at least k vertex sets of Pi, i.e., there exist at least k vertex sets S1, ..., S-k is an element of Pi such that d(u, S-i) not equal d(v, S-i) for every i is an element of(1, ..., k}. A k-partition generator of G with minimum cardinality among all their k-partition generators is called a k-partition basis of G and its cardinality the k-partition dimension of G. A nontrivial connected graph G is k-partition dimensional if k is the largest integer such that G has a k-partition basis. We give a necessary and sufficient condition for a graph to be r-partition dimensional and we obtain several results on the k-partition dimension for k is an element of{1, ..., r}. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 45 条
[1]  
[Anonymous], 2006, AEQUATIONES MATH, DOI [DOI 10.1007/S00010-005-2800-Z, 10.1007/s00010-005-2800-z]
[2]   The Local Metric Dimension of the Lexicographic Product of Graphs [J].
Barragan-Ramirez, Gabriel A. ;
Estrada-Moreno, Alejandro ;
Ramirez-Cruz, Yunior ;
Rodriguez-Velazquez, Juan A. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) :2481-2496
[3]   The Simultaneous Local Metric Dimension of Graph Families [J].
Barragan-Ramirez, Gabriel A. ;
Estrada-Moreno, Alejandro ;
Ramirez-Cruz, Yunior ;
Rodriguez-Velazquez, Juan A. .
SYMMETRY-BASEL, 2017, 9 (08)
[4]   The Metric Dimension of Metric Spaces [J].
Bau, Sheng ;
Beardon, Alan F. .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (02) :295-305
[5]   On the k-metric dimension of metric spaces [J].
Beardon, Alan F. ;
Rodriguez-Velazquez, Juan A. .
ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) :25-38
[6]  
Blumenthal L.M., 1953, Theory and applications of distance geometry
[7]  
Brigham R. C., 2003, Mathematica Bohemica, V128, P25, DOI DOI 10.21136/MB.2003.133935
[8]   WEAK TOTAL RESOLVABILITY IN GRAPHS [J].
Casel, Katrin ;
Estrada-Moreno, Alejandro ;
Fernau, Henning ;
Alberto Rodriguez-Velazquez, Juan .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (01) :185-210
[9]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[10]   Resolvability and the upper dimension of graphs [J].
Chartrand, G ;
Poisson, C ;
Zhang, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (12) :19-28