H∞ control of parameter-dependent state-delayed systems using polynomial parameter-dependent quadratic functions

被引:69
作者
Karimi, HR [1 ]
Maralani, PJ
Lohmann, B
Moshiri, B
机构
[1] Univ Tehran, Dept Elect & Comp Engn, Control & Intelligent Proc Ctr Excellence, Tehran, Iran
[2] Univ Bremen, Inst Automat, D-28359 Bremen, Germany
关键词
D O I
10.1080/00207170500089455
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the issue of robust disturbance attenuation and robust asymptotic stability problem for finite-dimensional linear parameter-dependent state-delayed systems. The use of polynomial parameter-dependent quadratic Lyapunov functions and linear matrix inequalities (LMIs) formulations for robust H-infinity control are considered. It is shown that the state feedback control can be determined to guarantee the stability of the closed-loop system independently of the time-delay. We present an illustrative example to demonstrate the applicability of the proposed design approach.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 15 条
[1]  
Bliman PA, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P6103
[2]   A convex approach to robust stability for linear systems with uncertain scalar parameters [J].
Bliman, PA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) :2016-2042
[3]   An existence result for polynomial solutions of parameter-dependent LMIs [J].
Bliman, PA .
SYSTEMS & CONTROL LETTERS, 2004, 51 (3-4) :165-169
[4]  
Bliman PA, 2001, IEEE DECIS CONTR P, P1438, DOI 10.1109/CDC.2001.981094
[5]   Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions [J].
Feron, E ;
Apkarian, P ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :1041-1046
[6]   Affine parameter-dependent Lyapunov functions and real parametric uncertainty [J].
Gahinet, P ;
Apkarian, P ;
Chilali, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :436-442
[7]  
GAHINET P, 1995, NATIK MA MATH WORKS
[8]  
HARA S, 2004, P 16 INT S MATH THEO
[9]  
Lu B, 2004, P AMER CONTR CONF, P3875
[10]  
SCHERER CW, 2004, P 16 INT S MATH THEO