A new proof of partial regularity of solutions to Navier-Stokes equations

被引:107
作者
Vasseur, Alexis F. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2007年 / 14卷 / 5-6期
基金
美国国家科学基金会;
关键词
Navier-Stokes; regularity; De Giorgi; energy method;
D O I
10.1007/s00030-007-6001-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a new proof of the partial regularity of solutions to the incompressible Navier-Stokes equation in dimension 3 first proved by Caffarelli, Kohn and Nirenberg. The proof relies on a method introduced by De Giorgi for elliptic equations.
引用
收藏
页码:753 / 785
页数:33
相关论文
共 25 条
[1]  
[Anonymous], 2003, USP MAT NAUK
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[4]  
FOIAS C, 1979, J MATH PURE APPL, V58, P339
[5]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[6]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[7]  
Giorgi E. De., 1957, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Math. Nat., V3, P25
[8]   BOUNDEDNESS FOR LARGE VERTICAL-BAR-X-VERTICAL-BAR OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS WITH PRESCRIBED VELOCITY AT INFINITY [J].
GRUNAU, HC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :577-587
[9]   On partial regularity for weak solutions to the Navier-Stokes equations [J].
He, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (01) :153-162
[10]  
Hopf E., 1950, MATH NACHR, V4, P213, DOI DOI 10.1002/MANA.3210040121