A complex periodic QES potential and exceptional points

被引:12
作者
Bagchi, B. [1 ]
Quesne, C. [2 ]
Roychoudhury, R. [3 ]
机构
[1] Univ Calcutta, Dept Appl Math, Kolkata 700009, W Bengal, India
[2] Univ Libre Brussels, B-1050 Brussels, Belgium
[3] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700035, W Bengal, India
关键词
D O I
10.1088/1751-8113/41/2/022001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the complex PT-symmetric periodic potential V (x) = -( i xi sin 2x + N)(2), where xi is real and N is a positive integer, is quasi-exactly solvable. For odd values of N >= 3, it may lead to exceptional points depending upon the strength of the coupling parameter xi. The corresponding Schrodinger equation is also shown to go over to the Mathieu equation asymptotically. The limiting value of the exceptional points derived in our scheme is consistent with known branch-point singularities of the Mathieu equation.
引用
收藏
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   A PT-symmetric QES partner to the Khare-Mandal potential with real eigenvalues [J].
Bagchi, B ;
Mallik, S ;
Quesne, C ;
Roychoudhury, R .
PHYSICS LETTERS A, 2001, 289 (1-2) :34-38
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   Complex periodic potentials with real band spectra [J].
Bender, CM ;
Dunne, GV ;
Meisinger, PN .
PHYSICS LETTERS A, 1999, 252 (05) :272-276
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   The optical singularities of bianisotropic crystals [J].
Berry, MV .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2059) :2071-2098
[7]   DOUBLE POINTS OF MATHIEUS DIFFERENTIAL EQUATION [J].
BLANCH, G ;
CLEMM, DS .
MATHEMATICS OF COMPUTATION, 1969, 23 (105) :97-&
[8]  
BOUWKAMP CJ, 1948, KON NED AKAD WET, V51, P891
[9]   One-dimensional crystal with a complex periodic potential [J].
Boyd, JK .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :15-29
[10]   Projective Hilbert space structures at exceptional points [J].
Guenther, Uwe ;
Rotter, Ingrid ;
Samsonov, Boris F. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (30) :8815-8833