Downregulation of the BK channel β1 subunit in genetic hypertension

被引:178
作者
Amberg, GC [1 ]
Santana, LF [1 ]
机构
[1] Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA
关键词
Ca2+ sparks; ryanodine receptors; sarcoplasmic reticulum; iberiotoxin;
D O I
10.1161/01.RES.0000100068.43006.36
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The molecular mechanisms underlying increased arterial tone during hypertension are unclear. In vascular smooth muscle, localized Ca2+ release events through ryanodine-sensitive channels located in the sarcoplasmic reticulum (Ca2+ sparks) activate large-conductance, Ca2+-sensitive K+ (BK) channels. Ca2+ sparks and BK channels provide a negative feedback mechanism that hyperpolarizes smooth muscle and thereby opposes vasoconstriction. In this study, we examined Ca2+ sparks and BK channel function in Wistar-Kyoto (WKY) rats with borderline hypertension and in spontaneously hypertensive rats (SHR), a widely used genetic model of severe hypertension. We found that the amplitude of spontaneous BK currents in WKY and SHR cells were smaller than in normotensive cells even though Ca2+ sparks were of similar magnitude. BK channels in WKY and SHR cells were less sensitive to physiological changes in intracellular Ca2+ than normotensive cells. Our data indicate that decreased expression of the BK channel beta1 subunit underlies the lower Ca2+ sensitivity of BK channels in SHR and WKY myocytes. We conclude that the lower expression of the beta1 subunit during genetic borderline and severe hypertension reduced BK channel activity by decreasing the sensitivity of these channels to physiological changes in Ca2+. These results support the view that changes in the molecular composition of BK channels may be a fundamental event contributing to the development of vascular dysfunction during hypertension.
引用
收藏
页码:965 / 971
页数:7
相关论文
共 32 条
[1]   A new inbred Wistar-Kyoto rat substrain exhibiting apparent salt sensitivity and borderline hypertension [J].
Alemayehu, A ;
Breen, L ;
Printz, MP .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 283 (03) :H1181-H1190
[2]   Modulation of the molecular composition of large conductance, Ca2+activated K+ channels in vascular smooth muscle during hypertension [J].
Amberg, GC ;
Bonev, AD ;
Rossow, CF ;
Nelson, MT ;
Santana, LF .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (05) :717-724
[3]   Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries [J].
Bonev, AD ;
Jaggar, JH ;
Rubart, M ;
Nelson, MT .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1997, 273 (06) :C2090-C2095
[4]   REGULATION OF ARTERIAL TONE BY ACTIVATION OF CALCIUM-DEPENDENT POTASSIUM CHANNELS [J].
BRAYDEN, JE ;
NELSON, MT .
SCIENCE, 1992, 256 (5056) :532-535
[5]   Vasoregulation by the β1 subunit of the calcium-activated potassium channel [J].
Brenner, R ;
Peréz, GJ ;
Bonev, AD ;
Eckman, DM ;
Kosek, JC ;
Wiler, SW ;
Patterson, AJ ;
Nelson, MT ;
Aldrich, RW .
NATURE, 2000, 407 (6806) :870-876
[6]   Amplitude distribution of calcium sparks in confocal images:: Theory and studies with an automatic detection method [J].
Cheng, H ;
Song, LS ;
Shirokova, N ;
González, A ;
Lakatta, EG ;
Ríos, E ;
Stern, MD .
BIOPHYSICAL JOURNAL, 1999, 76 (02) :606-617
[7]   Sarcoplasmic reticulum calcium load regulates rat arterial smooth muscle calcium sparks and transient KCa currents [J].
Cheranov, SY ;
Jaggar, JH .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 544 (01) :71-84
[8]   Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [J].
Chobanian, AV ;
Bakris, GL ;
Black, HR ;
Cushman, WC ;
Green, LA ;
Izzo, JL ;
Jones, DW ;
Materson, BJ ;
Oparil, S ;
Wright, JT ;
Roccella, EJ .
HYPERTENSION, 2003, 42 (06) :1206-1252
[9]   Role of the β1 subunit in large-conductance Ca2+-activated K+ channel gating energetics -: Mechanisms of enhanced Ca2+ sensitivity [J].
Cox, DH ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 2000, 116 (03) :411-432
[10]   (Xeno)estrogen sensitivity of smooth muscle BK channels conferred by the regulatory β1 subunit -: A study of β1 knockout mice [J].
Dick, GM ;
Sanders, KM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (48) :44835-44840