Drag Reduction and Energy Saving by Spanwise Traveling Transversal Surface Waves for Flat Plate Flow

被引:29
作者
Albers, Marian [1 ]
Meysonnat, Pascal S. [1 ]
Fernex, Daniel [2 ]
Semaan, Richard [2 ]
Noack, Bernd R. [2 ,3 ,4 ,5 ]
Schroeder, Wolfgang [1 ,6 ]
机构
[1] Rhein Westfal TH Aachen, Inst Aerodynam, Wullnerstr 5a, D-52062 Aachen, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Stromungsmech, Hermann Blenk Str 37, D-38108 Braunschweig, Germany
[3] Univ Paris Saclay, LIMSI, CNRS, Bat 507,Rue Belvedere,Campus Univ, F-91403 Orsay, France
[4] Tech Univ Berlin, Inst Stromungsmech & Tech Akust ISTA, Muller Breslau Str 8, D-10623 Berlin, Germany
[5] Harbin Inst Technol, Inst Turbulence Noise Vibrat Interact & Control, Shenzhen Campus, Shenzhen, Peoples R China
[6] Rhein Westfal TH Aachen, JARA Ctr Simulat & Data Sci, Seffenter Weg 23, D-52074 Aachen, Germany
关键词
Turbulent boundary layer; Drag reduction; Transversal traveling surface wave; Large-eddy simulation; Active flow control; DIRECT NUMERICAL-SIMULATION; TURBULENT-BOUNDARY-LAYER; OSCILLATORY WALL-MOTION; LARGE-EDDY SIMULATION; COMPLIANT WALL; FLEXIBLE WALL;
D O I
10.1007/s10494-020-00110-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wall-resolved large-eddy simulations are performed to study the impact of spanwise traveling transversal surface waves in zero-pressure gradient turbulent boundary layer flow. Eighty variations of wavelength, period, and amplitude of the space- and time-dependent sinusoidal wall motion are considered for a boundary layer at a momentum thickness based Reynolds number of Re = 1000. The results show a strong decrease of friction drag of up to 26% and considerable net power saving of up to 10%. However, the highest net power saving does not occur at the maximum drag reduction. The drag reduction is modeled as a function of the actuation parameters by support vector regression using the LES data. A dependence of the spanwise pressure drag on the wavelength is found. A substantial attenuation of the near-wall turbulence intensity and especially a weakening of the nearwall velocity streaks are observed. Similarities between the current actuation technique and the method of a spanwise oscillating wall without any normal surface deflection are reported. In particular, the generation of a directional spanwise oscillating Stokes layer is found to be related to skin-friction reduction.
引用
收藏
页码:125 / 157
页数:33
相关论文
共 59 条
[1]   Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at Reτ=1000 [J].
Agostini, L. ;
Touber, E. ;
Leschziner, M. A. .
JOURNAL OF FLUID MECHANICS, 2014, 743 :606-635
[2]   Actively Reduced Airfoil Drag by Transversal Surface Waves [J].
Albers, Marian ;
Meysonnat, Pascal S. ;
Schroeder, Wolfgang .
FLOW TURBULENCE AND COMBUSTION, 2019, 102 (04) :865-886
[3]   A large-eddy simulation method for low Mach number flows using preconditioning and multigrid [J].
Alkishriwi, N. ;
Meinke, M. ;
Schroeder, W. .
COMPUTERS & FLUIDS, 2006, 35 (10) :1126-1136
[4]  
Bechert D., 1985, 23 AER SCI M, DOI [10.2514/6.1985-546, DOI 10.2514/6.1985-546]
[5]  
BORIS JP, 1992, FLUID DYN RES, V10, P199, DOI 10.1016/0169-5983(92)90023-P
[6]   Turbulent boundary-layer control by means of spanwise wall oscillation [J].
Choi, KS ;
DeBisschop, JR ;
Clayton, BR .
AIAA JOURNAL, 1998, 36 (07) :1157-1163
[7]   Turbulent drag reduction using compliant surfaces [J].
Choi, KS ;
Yang, X ;
Clayton, BR ;
Glover, EJ ;
Atlar, M ;
Semenov, BN ;
Kulik, VM .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1965) :2229-2240
[8]  
Clauser F.H., 1956, ADV APPL MECH, P1, DOI [10.1016/S0065-2156(08)70370-3, DOI 10.1016/S0065-2156(08)70370-3]
[9]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[10]   Suppressing wall turbulence by means of a transverse traveling wave [J].
Du, YQ ;
Karniadakis, GE .
SCIENCE, 2000, 288 (5469) :1230-1234