Biostimulants: An innovation in agriculture for coffee cultivation (Coffea arabica L)

被引:0
|
作者
Yhony, Valverde-Lucio [1 ]
Josselyn, Moreno-Quinto [1 ]
Karen, Quijije-Quiroz [1 ]
Alfredo, Castro-Landin [1 ]
Williams, Merchan-Garcia [1 ]
Julio, Gabriel-Ortega [1 ]
机构
[1] Univ Estatal Sur Manabi UNESUM, Fac Ciencias Nat & Agr, Km 1-5 Via Noboa,Campus Angeles, Jipijapa, Manabi, Ecuador
关键词
Dry matter; physiology; morphology; chlorophyll; nitrogen; correlation; measurements over time; PLANT; LEAF;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The research was carried out in Jipijapa in the town of Andil, the objective was to evaluate the physiological and morphological behavior of Arabic coffee in the nursery stage to the application of biostimulants: Starlite, Humega, Micorriza and Evergreen, compared to Urea. The experimental design was applied completely at random, factorial arrangement of repetitions over time in the morphological variables was used, the Tukey test was applied based on the statistical differences found. The results obtained at the physiological level, established a significant difference p <0.05 in the variables dry matter, humidity and nitrogen (N), with the biostimulants Starlite and Evergreen being the best in MS, and to the Humega and Evergreen in content of N. There was a better response to the assimilation of chlorophyll by all biostimulants, generally exceeding urea, being the best Micorriza and Starlite, establishing a high positive correlation between N and Chlorophyll. Regarding morphological development, a better urea response was found, and at the level of biostimulants, Humega and Mycorrhiza expressed better results, all between 90 and 120 days. (C) 2020. Journal of the Selva Andina Research Society. Bolivia. All rights reserved.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 50 条
  • [21] Molecular analysis of introgressive breeding in coffee (Coffea arabica L.)
    P. Lashermes
    S. Andrzejewski
    B. Bertrand
    M. C. Combes
    S. Dussert
    G. Graziosi
    P. Trouslot
    F. Anthony
    Theoretical and Applied Genetics, 2000, 100 : 139 - 146
  • [22] Prevalence of mycotoxigenic fungi and ochratoxin A in coffee (Coffea arabica L.)
    Hagos, Legese
    Guta, Meseret
    Bacha, Ketema
    COGENT FOOD & AGRICULTURE, 2024, 10 (01):
  • [23] Electromagnetic field effect of the in the callugenesis of Coffee (Coffea arabica L.)
    Ferrer Dubois, Albys E.
    Fung Boix, Yilan
    Issac Aleman, Elizabet
    CENTRO AGRICOLA, 2007, 34 (04): : 71 - 75
  • [24] QUANTITATIVE-DETERMINATION OF FLOWERING IN COFFEE, COFFEA-ARABICA L
    FOURNIER, LA
    TURRIALBA, 1980, 30 (02): : 219 - 220
  • [25] CARBON STOCKS IN SOIL AND COFFEE PLANTS (Coffea arabica L.)
    da Silva, Adriano Bortolotti
    Mantovani, Jose Ricardo
    Moreira, Andre Luiz
    Nogueira Reis, Rafael Lellis
    INTERCIENCIA, 2013, 38 (04) : 286 - 291
  • [26] Molecular characterization of Arabica Coffee (Coffea arabica L.) germplasms and their contribution to biodiversity in Ethiopia
    Dida, Gudeta
    Bantte, Kassahun
    Disasa, Tesfaye
    PLANT BIOTECHNOLOGY REPORTS, 2021, 15 (06) : 791 - 804
  • [27] Analysis of alien introgression in coffee tree (Coffea arabica L.)
    Lashermes, Philippe
    Combes, Marie-Christine
    Ansaldi, Caroline
    Gichuru, Elijah
    Noir, Sandra
    MOLECULAR BREEDING, 2011, 27 (02) : 223 - 232
  • [28] Controlled hydration for priming in coffee (Coffea arabica L.) seeds
    Lima, WAA
    Dias, DCFS
    Cecon, PR
    SEED SCIENCE AND TECHNOLOGY, 2003, 31 (01) : 29 - 37
  • [29] Influence of Silver Nitrate on Somatic Embryogenesis Induction in Arabica Coffee (Coffea arabica L.)
    Rojas-Lorz, Laura
    Arrieta-Espinoza, Griselda
    Valdez-Melara, Marta
    Protasio Pereira, Luiz Filipe
    Gatica-Arias, Andres
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2019, 62
  • [30] Molecular characterization of Arabica Coffee (Coffea arabica L.) germplasms and their contribution to biodiversity in Ethiopia
    Gudeta Dida
    Kassahun Bantte
    Tesfaye Disasa
    Plant Biotechnology Reports, 2021, 15 : 791 - 804