共 21 条
Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman's Function
被引:3
作者:
Jain, Shilpi
[1
]
Goyal, Rahul
[2
]
Agarwal, Praveen
[2
,3
,4
,5
]
Lupica, Antonella
[6
]
Cesarano, Clemente
[7
]
机构:
[1] Poornima Coll Engn, Dept Math, Jaipur 302021, Rajasthan, India
[2] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[3] Harish Chandra Res Inst, Dept Math, Allahabad 211019, Uttar Pradesh, India
[4] Int Ctr Basic & Appl Sci, Jaipur 302029, Rajasthan, India
[5] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 346, U Arab Emirates
[6] Univ Tuscia, Dept Econ Engn Soc & Business Org, DEIM Dept, I-01100 Viterbo, Italy
[7] Int Telemat Univ, Sect Math, I-00186 Rome, Italy
来源:
关键词:
classical Euler beta function;
gamma function;
Gauss hypergeometric function;
confluent hypergeometric function;
Mittag-Leffler function;
GAMMA;
INEQUALITIES;
EXTENSION;
D O I:
10.3390/math9222944
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative formulas for these extended functions are derived. We also introduce the logarithmic convexity and some important inequalities for extended beta function.
引用
收藏
页数:21
相关论文