Robust Synchronization Control of Uncertain Fractional-Order Chaotic Systems via Disturbance Observer

被引:0
作者
Xue, Kaijuan [1 ]
Huangfu, Yongbing [1 ]
机构
[1] Shanxi Engn Vocat Coll, Dept Mech & Elect Engn, Taiyuan 030009, Peoples R China
关键词
SLIDING MODE CONTROL; LYAPUNOV FUNCTIONS; STABILITY; ALGORITHM;
D O I
10.1155/2021/3561003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the synchronization of two different fractional-order chaotic systems through the fractional-order control method, which can ensure that the synchronization error converges to a sufficiently small compact set. Afterwards, the disturbance observer of the synchronization control scheme based on adaptive parameters is designed to predict unknown disturbances. The Lyapunov function method is used to verify the appropriateness of the disturbance observer design and the convergence of the synchronization error, and then the feasibility of the control scheme is obtained. Finally, our simulation studies verify and clarify the proposed method.
引用
收藏
页数:12
相关论文
共 26 条
  • [1] Lyapunov functions for fractional order systems
    Aguila-Camacho, Norelys
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2951 - 2957
  • [2] Al-Obeidi A.S., 2019, INT J ENG TECHNOLOGY, V7, P5345
  • [3] [Anonymous], 2014, FRACTIONAL CALCULUS
  • [4] RETRACTED: Chaos Synchronization of the Distributed-Order Lorenz System via Active Control and Applications in Chaotic Masking (Retracted article. See vol. 28, 2018)
    Chen, Jiyang
    Li, Chuandong
    Yang, Xujun
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (10):
  • [5] Chen S., 2021, IEEE T IND ELECTRON, DOI [10.1109/tie.2021.3062274, DOI 10.1109/TIE.2021.3062274]
  • [6] An innovative parameter estimation for fractional order systems impulse noise
    Cui, Rongzhi
    Wei, Yiheng
    Cheng, Songsong
    Wang, Yong
    [J]. ISA TRANSACTIONS, 2018, 82 : 120 - 129
  • [7] Analysis of fractional differential equations
    Diethelm, K
    Ford, NJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) : 229 - 248
  • [8] Synchronization and anti-synchronization of a fractional order delayed memristor-based chaotic system using active control
    Ding, Dawei
    Qian, Xin
    Wang, Nian
    Liang, Dong
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (14):
  • [9] Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems
    Duarte-Mermoud, Manuel A.
    Aguila-Camacho, Norelys
    Gallegos, Javier A.
    Castro-Linares, Rafael
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 650 - 659
  • [10] Adaptive neural network prescribed performance matrix projection synchronization for unknown complex dynamical networks with different dimensions
    Fan, Aili
    Li, Junmin
    [J]. NEUROCOMPUTING, 2018, 281 : 55 - 66