Application of Numerical Weather Prediction Data to Estimate Infection Risk of Bacterial Grain Rot of Rice in Korea

被引:4
|
作者
Kim, Hyo-suk [1 ]
Do, Ki Seok [2 ]
Park, Joo Hyeon [3 ]
Kang, Wee Soo [4 ]
Lee, Yong Hwan [4 ]
Park, Eun Woo [1 ,2 ,5 ,6 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 08826, South Korea
[2] Natl Ctr Agrometeorol, Seoul 08826, South Korea
[3] EPINET Corp, Anyang 14056, South Korea
[4] Rural Dev Adm, Natl Inst Agr Sci, Dept Agrofood Safety & Crop Protect, Wonju 55365, South Korea
[5] Seoul Natl Univ, Interdisciplinary Program Agr & Forest Meteorol, Seoul 08826, South Korea
[6] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul 08826, South Korea
关键词
bacterial grain rot of rice; numerical weather prediction data; plant disease forecast; Unified Model; BURKHOLDERIA-GLUMAE; LEAF WETNESS; FORECAST MODEL; FUNGICIDE USE; DISEASE; INFORMATION; BLIGHT; DURATION; SYSTEM; INPUT;
D O I
10.5423/PPJ.OA.11.2019.0281
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Meteorological Administration (K1VIA), disease forecast on bacterial grain rot (BGR) of rice was examined as compared with the model output based on the automated weather stations (AWS)-observed weather data. We analyzed performance of BGRcast based on the UM-predicted and the AWS-observed daily minimum temperature and average relative humidity in 2014 and 2015 from 29 locations representing major rice growing areas in Korea using regression analysis and two-way contingency table analysis. Temporal changes in weather conduciveness at two locations in 2014 were also analyzed with regard to daily weather conduciveness (C-i) and the 20-day and 7-day moving averages of C-i for the inoculum build-up phase (C-inc) prior to the panicle emergence of rice plants and the infection phase (C-inf) during the heading stage of rice plants, respectively. Based on C-inc and C-inf, we were able to obtain the same disease warnings at all locations regardless of the sources of weather data. In conclusion, the numerical weather prediction data from KMA could be reliable to apply as input data for plant disease forecast models. Weather prediction data would facilitate applications of weather-driven disease models for better disease management. Crop growers would have better options for disease control including both protective and curative measures when weather prediction data are used for disease warning.
引用
收藏
页码:54 / 66
页数:13
相关论文
empty
未找到相关数据