Global existence results for nonlinear Schrodinger equations with quadratic potentials

被引:30
作者
Carles, R
机构
[1] MAB, CNRS, UMR 5466, F-33405 Talence, France
[2] Univ Bordeaux 1, F-33405 Talence, France
关键词
nonlinear Schrodinger equation; Mehler's formula; Strichartz estimates; global well-posedness; scattering;
D O I
10.3934/dcds.2005.13.385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that no finite time blow up can occur for nonlinear Schrodinger equations with quadratic potentials, provided that the potential has a sufficiently strong repulsive component. This is not obvious in general, since the energy associated to the linear equation is not positive. The proof relies essentially on two arguments: global in time Strichartz estimates, and a refined analysis of the linear equation, which makes it possible to control the nonlinear effects.
引用
收藏
页码:385 / 398
页数:14
相关论文
共 24 条
[1]   On nonlinear Schrodinger equations in exterior domains [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (03) :295-318
[2]  
BURQ N, 2004, MATHAP0409379
[3]  
Carles R, 2004, OSAKA J MATH, V41, P693
[4]   Nonlinear Schrodinger equations with repulsive harmonic potential and applications [J].
Carles, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :823-843
[5]   Semi-classical Schrodinger equations with harmonic potential and nonlinear perturbation [J].
Carles, R .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :501-542
[6]   Remarks on nonlinear Schrodinger equations with harmonic potential [J].
Carles, R .
ANNALES HENRI POINCARE, 2002, 3 (04) :757-772
[7]  
Carles R., 2004, Hokkaido Math. J., V33, P719, DOI [10.14492/hokmj/1285851920, DOI 10.14492/HOKMJ/1285851920]
[8]  
CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18
[9]  
Cazenave T., 2003, Semilinear Schrodinger equations, V10
[10]   Microlocal dispersive smoothing for the Schrodinger equation [J].
Craig, W ;
Kappeler, T ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (08) :769-860