Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme

被引:263
作者
Nakagawa, Kimie [1 ]
Hirota, Yoshihisa [1 ]
Sawada, Natsumi [1 ]
Yuge, Naohito [1 ]
Watanabe, Masato [1 ]
Uchino, Yuri [1 ]
Okuda, Naoko [1 ]
Shimomura, Yuka [1 ]
Suhara, Yoshitomo [1 ]
Okano, Toshio [1 ]
机构
[1] Kobe Pharmaceut Univ, Dept Hyg Sci, Higashinada Ku, Kobe, Hyogo 6588558, Japan
关键词
DIETARY PHYLLOQUINONE; GENE; VITAMIN-K-2; CONVERSION; ACCUMULATION; METABOLISM; MUTATIONS; TISSUES; RATS;
D O I
10.1038/nature09464
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vitamin K occurs in the natural world in several forms, including a plant form, phylloquinone (PK), and a bacterial form, menaquinones (MKs). In many species, including humans, PK is a minor constituent of hepatic vitamin K content, with most hepatic vitamin K content comprising long-chain MKs. Menaquinone-4 (MK-4) is ubiquitously present in extrahepatic tissues, with particularly high concentrations in the brain, kidney and pancreas of humans and rats(1-3). It has consistently been shown that PK is endogenously converted to MK-4 (refs 4-8). This occurs either directly within certain tissues or by interconversion to menadione (K-3), followed by prenylation to MK-4 (refs 9-12). No previous study has sought to identify the human enzyme responsible for MK-4 biosynthesis. Previously we provided evidence for the conversion of PK and K3 into MK-4 in mouse cerebra(13). However, the molecular mechanisms for these conversion reactions are unclear. Here we identify a human MK-4 biosynthetic enzyme. We screened the human genome database for prenylation enzymes and found UbiA prenyltransferase containing 1 (UBIAD1), a human homologue of Escherichia coli prenyltransferase menA. We found that short interfering RNA against the UBIAD1 gene inhibited the conversion of deuterium-labelled vitamin K derivatives into deuterium-labelled-MK-4 (MK-4-d(7)) in human cells. We confirmed that the UBIAD1 gene encodes an MK-4 biosynthetic enzyme through its expression and conversion of deuterium-labelled vitamin K derivatives into MK-4-d(7) in insect cells infected with UBIAD1 baculovirus. Converted MK-4-d(7) was chemically identified by H-2-NMR analysis. MK-4 biosynthesis by UBIAD1 was not affected by the vitamin K antagonist warfarin. UBIAD1 was localized in endoplasmic reticulum and ubiquitously expressed in several tissues of mice. Our results show that UBIAD1 is a human MK-4 biosynthetic enzyme; this identification will permit more effective decisions to be made about vitamin K intake and bone health.
引用
收藏
页码:117 / +
页数:6
相关论文
empty
未找到相关数据