Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid

被引:28
作者
Boulakia, M [1 ]
机构
[1] Univ Versailles, Lab Math Appl, F-78035 Versailles, France
关键词
D O I
10.1016/S1631-073X(03)00235-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study here the two dimensional motion of an elastic body immersed in an incompressible viscous fluid. The body and the fluid are contained in a fixed bounded set Omega. We show the existence of a weak solution for regularized elastic deformations as long as elastic deformations are not too important and no collisions occur. A complete proof is given by Boulakia in existence d'une solution firible pour un probleme d'interaction fluide visqueux incompressible-solide elastique (prepublication 104, UVSQ, 2003). (C) 2003 Academie des sciences. Published by Editions scientiliques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:985 / 990
页数:6
相关论文
共 4 条
[1]   L-r regularity for the Stokes and Navier-Stokes problems. [J].
Bello, JA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 170 :187-206
[2]  
Desjardins B., 2001, REV MAT COMPLUT, V14, P523
[3]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[4]  
Lions P-L, 1996, MATH TOPICS FLUID ME