Long-range 1H-15N heteronuclear shift correlation across wide F1 spectral windows

被引:7
|
作者
Martin, Gary E. [1 ]
Hilton, Bruce D. [1 ]
Moskau, Detlef [2 ]
Freytag, Nicolas [2 ]
Kessler, Klemens [2 ]
Colson, Kim [3 ]
机构
[1] Merck Res Labs, Discovery & Preclin Sci Proc Chem Rapid Struct Ch, Summit, NJ 07901 USA
[2] Bruker BioSpin AG, Fallanden, Switzerland
[3] Bruker BioSpin, Billerica, MA USA
关键词
NMR; long-range heteronuclear correlation; H-1-N-15; GHMBC; methyl orange; N-15; NMR-SPECTROSCOPY; STRUCTURAL-ANALYSIS;
D O I
10.1002/mrc.2691
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Long-range H-1-N-15 heteronuclear shift correlation experiments at natural abundance are becoming more routinely utilized in the characterization of unknown chemical structures from a diverse range of sources including natural products and pharmaceuticals. Apart from the inherent challenges of the low gyromagnetic ratio and natural abundance of N-15, investigators are also occasionally hampered by having to deal with the wide spectral range inherent to various nitrogen functional groups, which can exceed 500 ppm. Earlier triple resonance cryoprobe designs typically provided 90 degrees N-15 pulses in the range of 35-40 mu s, which did not allow the uniform excitation of wide F-1 spectral ranges for H-1-N-15 GHMBC spectra. We report the results obtained with a newly designed Bruker 600 MHz triple resonance TCI Micro CryoProbe (TM) using methyl orange as a model compound, in which the N-15 resonances are separated by >450 ppm. Copyright (C) 2010 John wiley & Sons, Ltd.
引用
收藏
页码:935 / 937
页数:3
相关论文
共 50 条
  • [31] Inverse detection and heteronuclear editing in 1H-15N correlation and 1H-1H double-quantum NMR spectroscopy in the solid state under fast MAS
    Schnell, I
    Langer, B
    Söntjens, SHM
    van Genderen, MHP
    Sijbesma, RP
    Spiess, HW
    JOURNAL OF MAGNETIC RESONANCE, 2001, 150 (01) : 57 - 70
  • [32] PFG J-HMBC 2D NMR spectroscopic observation of the natural abundance 1H-15N long-range coupling
    Tokunaga, T
    Seki, H
    Utsumi, H
    Nakakoshi, M
    Yamaguchi, K
    ANALYTICAL SCIENCES, 1999, 15 (11) : 1157 - 1158
  • [33] PFG J-HMBC 2D NMR Spectroscopic Observation of the Natural Abundance 1H-15N Long-Range Coupling
    Tatsuhiro Tokunaga
    Hiroko Seki
    Hiroaki Utsumi
    Masamichi Nakakoshi
    Kentaro Yamaguchi
    Analytical Sciences, 1999, 15 : 1157 - 1158
  • [34] Three-dimensional 13C shift/1H-15N Coupling/15N shift solid-state NMR correlation spectroscopy
    Gu, ZT
    Opella, SJ
    JOURNAL OF MAGNETIC RESONANCE, 1999, 138 (02) : 193 - 198
  • [35] Long-range two-dimensional H-1-N-13 heteronuclear shift correlation at natural abundance using GHNMQC. A study of the reverse transcriptase inhibitor delavirdine
    Farley, KA
    Walker, GS
    Martin, GE
    MAGNETIC RESONANCE IN CHEMISTRY, 1997, 35 (10) : 671 - 679
  • [36] Rapid acquisition of 1H-13C and 1H-15N heteronuclear chemical shift correlation data at the submilligram level using SMIDG (submicro inverse-detection gradient) NMR probe technology
    Martin, GE
    Hadden, CE
    Tackie, AN
    Sharaf, MMH
    Schiff, PL
    MAGNETIC RESONANCE IN CHEMISTRY, 1999, 37 (08) : 529 - 537
  • [37] LONG-RANGE HETERONUCLEAR CHEMICAL-SHIFT CORRELATION WITH ONE BOND MODULATION DECOUPLING - PHENANTHRO[1,2-B]THIOPHENE
    KRUGER, DK
    MARTIN, GE
    MCKENNEY, JD
    CASTLE, RN
    JOURNAL OF HETEROCYCLIC CHEMISTRY, 1988, 25 (02) : 693 - 697
  • [38] Long-range H-1-N-15 couplings and N-15 chemical shift assignments of the bis-indole anticancer drug Navelbine(R)
    Martin, GE
    Crouch, RC
    JOURNAL OF HETEROCYCLIC CHEMISTRY, 1995, 32 (06) : 1839 - 1842
  • [39] AN EFFICIENT 2D NMR TECHNIQUE HELCO FOR HETERONUCLEAR [P-31-H-1] LONG-RANGE CORRELATION
    CHARY, KVR
    RASTOGI, VK
    GOVIL, G
    JOURNAL OF MAGNETIC RESONANCE SERIES B, 1993, 102 (01): : 81 - 83
  • [40] Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
    Esadze, Alexandre
    Li, Da-Wei
    Wang, Tianzhi
    Brueschweiler, Rafael
    Iwahara, Junji
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (04) : 909 - 919