Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation

被引:81
|
作者
Zhang, Lijun [1 ,2 ]
Stratmann, Matthias [1 ]
Du, Yong [2 ]
Sundman, Bo [3 ]
Steinbach, Ingo [1 ]
机构
[1] Ruhr Univ Bochum, ICAMS, D-44780 Bochum, Germany
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] CEA Saclay, INSTN, Saclay, France
基金
中国国家自然科学基金;
关键词
Phase-field model; Computational thermodynamics; Kinetics of phase transformations; CALPHAD modelling; MICROSTRUCTURE EVOLUTION; DIFFUSION COUPLES; RAPID SOLIDIFICATION; MULTICOMPONENT; SYSTEM; TRANSFORMATIONS; SIMULATION; ALLOYS; SUPERALLOYS; GROWTH;
D O I
10.1016/j.actamat.2014.11.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new approach to incorporate the sublattice models in the CALPHAD (CALculation of PHAse Diagram) formalism directly into the phase-field formalism is developed. In binary alloys, the sublattice models can be classified into two types (i.e., "Type I" and "Type II"), depending on whether a direct one-to-one relation between the element site fraction in the CALPHAD database and the phase concentration in the phase-field model exists (Type I), or not (Type II). For "Type II" sublattice models, the specific site fractions, corresponding to a given mole fraction, have to be established via internal relaxation between different sublattices. Internal minimization of sublattice occupancy and solute evolution during microstructure transformation leads, in general, to a solution superior to the separate solution of the individual problems. The present coupling technique is validated for Fe-C and Ni-Al alloys. Finally, the model is extended into multicomponent alloys and applied to simulate the nucleation process of VC monocarbide from austenite matrix in a steel containing vanadium. (c) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 50 条
  • [41] Nonlinear phase-field model for electrode-electrolyte interface evolution
    Liang, Linyun
    Qi, Yue
    Xue, Fei
    Bhattacharya, Saswata
    Harris, Stephen J.
    Chen, Long-Qing
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [42] Conservative phase-field lattice Boltzmann model for interface tracking equation
    Geier, Martin
    Fakhari, Abbas
    Lee, Taehun
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [43] Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys
    Keller, Trevor
    Lindwall, Greta
    Ghosh, Supriyo
    Ma, Li
    Lane, Brandon M.
    Zhang, Fan
    Kattner, Ursula R.
    Lass, Eric A.
    Heigel, Jarred C.
    Idell, Yaakov
    Williams, Maureen E.
    Allen, Andrew J.
    Guyer, Jonathan E.
    Levine, Lyle E.
    ACTA MATERIALIA, 2017, 139 : 244 - 253
  • [44] Phase-field Modeling of Precipitate Behavior in RPV Steel Using CALPHAD Database
    Chang, Kunok
    Kwon, Junhyun
    Lee, Gyeong-Geun
    KOREAN JOURNAL OF METALS AND MATERIALS, 2018, 56 (06): : 472 - 478
  • [45] ON THE RELATION BETWEEN THE STANDARD PHASE-FIELD MODEL AND A THERMODYNAMICALLY CONSISTENT PHASE-FIELD MODEL
    PENROSE, O
    FIFE, PC
    PHYSICA D, 1993, 69 (1-2): : 107 - 113
  • [46] A damage phase-field model for fractional viscoelastic materials in finite strain
    T. C. da Costa-Haveroth
    G. A. Haveroth
    M. L. Bittencourt
    J. L. Boldrini
    Computational Mechanics, 2022, 69 : 1365 - 1393
  • [47] On the stress calculation within phase-field approaches: a model for finite deformations
    Schneider, Daniel
    Schwab, Felix
    Schoof, Ephraim
    Reiter, Andreas
    Herrmann, Christoph
    Selzer, Michael
    Boehlke, Thomas
    Nestler, Britta
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 203 - 217
  • [48] A damage phase-field model for fractional viscoelastic materials in finite strain
    da Costa-Haveroth, T. C.
    Haveroth, G. A.
    Bittencourt, M. L.
    Boldrini, J. L.
    COMPUTATIONAL MECHANICS, 2022, 69 (06) : 1365 - 1393
  • [49] On the stress calculation within phase-field approaches: a model for finite deformations
    Daniel Schneider
    Felix Schwab
    Ephraim Schoof
    Andreas Reiter
    Christoph Herrmann
    Michael Selzer
    Thomas Böhlke
    Britta Nestler
    Computational Mechanics, 2017, 60 : 203 - 217
  • [50] On a phase-field approach to model fracture of small intestine walls
    Nagaraja, Sindhu
    Leichsenring, Kay
    Ambati, Marreddy
    De Lorenzis, Laura
    Boel, Markus
    ACTA BIOMATERIALIA, 2021, 130 : 317 - 331