Absolutely (r, q)-Summing Operators on Vector-Valued Function Spaces

被引:0
作者
Munoz, Fernando [1 ]
Oja, Eve [2 ,3 ]
Pineiro, Candido [1 ]
机构
[1] Univ Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Campus Univ El Carmen, Huelva 21071, Spain
[2] Univ Tartu, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
[3] Estonian Acad Sci, Kohtu 6, EE-10130 Tallinn, Estonia
关键词
Banach spaces; Absolutely; (r; q)- and absolutely p-summing operators; Operator-valued measures; p-Continuous vector-valued functions; r-Variation; INJECTIVE TENSOR-PRODUCTS; NUCLEAR OPERATORS; SUMMING OPERATORS; INTEGRAL-OPERATORS; C(0); X);
D O I
10.1007/s00020-017-2376-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be Banach spaces and let be a compact Hausdorff space. In 1973, Swartz, in his by now classical theorem, characterized the absolute summability of an operator U from to Y in terms of its associated operator and of its representing measure m. We study the interplay between U, , and m in the context of absolutely (r, q)-summing operators, considering the spaces of p-continuous functions on , , instead of . This encompasses the Swartz theorem together with its existing extensions on absolutely (r, q)-summing operators, providing, among others, an improvement even to the Swartz theorem. Counterexamples are exhibited to indicate sharpness of our results.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 33 条
[1]  
[Anonymous], 1969, Israel J. Math., DOI DOI 10.1007/BF02788865
[2]  
[Anonymous], 2002, SPRINGER MONOGRAPHS
[3]   DUALITY BETWEEN SPACES OF P-SUMMABLE SEQUENCES, (P,Q)-SUMMING OPERATORS AND CHARACTERIZATIONS OF NUCLEARITY [J].
APIOLA, H .
MATHEMATISCHE ANNALEN, 1976, 219 (01) :53-64
[4]  
Bartle R. G., 1955, CAN J MATH, V7, P289
[5]  
Bilyeu R., 1976, ANN MAT PUR APPL, V109, P273
[6]   A CLASS OF SPECIAL L-INFINITY SPACES [J].
BOURGAIN, J ;
DELBAEN, F .
ACTA MATHEMATICA, 1980, 145 (3-4) :155-176
[7]   LINEAR-OPERATORS AND VECTOR MEASURES .2. [J].
BROOKS, JK ;
LEWIS, PW .
MATHEMATISCHE ZEITSCHRIFT, 1975, 144 (01) :45-53
[8]   A UNIFORM ALGEBRA OF ANALYTIC-FUNCTIONS ON A BANACH-SPACE [J].
CARNE, TK ;
COLE, B ;
GAMELIN, TW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (02) :639-659
[9]  
Defant A., 1993, North Holland Math. Stud., V176
[10]  
Diestel J., 1977, MATH SURVEYS MONOGRA, V15