Infinitely Many Solutions for Schrodinger-Choquard Equation with Critical Exponential Growth in RN

被引:0
作者
Song, Hongxue [1 ,2 ]
Chen, Caisheng [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Hohai Univ, Coll Sci, Nanjing 210098, Peoples R China
关键词
N -Laplacian-Choquard equation; Critical exponential growth; Schwarz symmetrization; EXISTENCE; SOLITON;
D O I
10.1007/s10883-021-09559-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we study the existence of infinitely many nonnegative solutions for Schrodinger-Choquard equation -Delta(N)u + V (x)vertical bar u vertical bar(N-2) u - Delta(N)(vertical bar u vertical bar(2 beta))vertical bar u vertical bar(2 beta-2) u = (I-alpha * vertical bar u vertical bar(q))vertical bar u vertical bar(q-2) u + h(u), x is an element of R-N, (0.1) where Delta(N) is the N-Laplacian operator, h(u) is odd and continuous function behaving likes exp(alpha(0)vertical bar u vertical bar N/N-1) when vertical bar u vertical bar -> infinity and N > 2 beta > 1. The potential V is an element of C(R-N) is positive and bounded in R-N. Using the Schwarz symmetrization with some special techniques and symmetric mountain pass lemma, we prove the existence of infinitely many solutions for (0.1) in W-1,W-N (R-N).
引用
收藏
页码:951 / 970
页数:20
相关论文
共 50 条
  • [31] On a planar Choquard equation involving exponential critical growth
    Carvalho, J.
    Medeiros, E.
    Ribeiro, B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [32] On a biharmonic choquard equation involving critical exponential growth
    de Souza, Manasses
    B. Severo, Uberlandio
    Maria Augusto Pequeno Silva, Lorena
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [33] Infinitely many solutions for nonhomogeneous Choquard equations
    Wang, Tao
    Guo, Hui
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (24) : 1 - 10
  • [34] Infinitely many solutions for a quasilinear Schrodinger equation with Hardy potentials
    Shang, Tingting
    Liang, Ruixi
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (50) : 1 - 18
  • [35] Infinitely many solutions for a nonlinear Schrodinger equation with general nonlinearity
    Sato, Yohei
    Shibata, Masataka
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [36] Normalized solutions for a biharmonic Choquard equation with exponential critical growth in R4
    Chen, Wenjing
    Wang, Zexi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [37] A logarithmic Choquard equation with critical exponential growth in R2
    Chen, Xiao-Ping
    Tang, Chun-Lei
    APPLICABLE ANALYSIS, 2024, 103 (17) : 3087 - 3115
  • [38] Existence of solutions for a fractional Choquard-type equation in R with critical exponential growth
    Clemente, Rodrigo
    de Albuquerque, Jose Carlos
    Barboza, Eudes
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [39] On fractional Schrodinger equation in RN with critical growth
    Shang, Xudong
    Zhang, Jihui
    Yang, Yang
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [40] Infinitely many solutions for a gauged nonlinear Schrodinger equation with a perturbation
    Xu, Jiafa
    Liu, Jie
    O'Regan, Donal
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (04): : 626 - 641