On estimates of solutions of the periodic boundary value problem for first-order functional differential equations

被引:2
作者
Bravyi, Eugene [1 ]
机构
[1] Perm Natl Res Polytech Univ, Sci Ctr Funct Differential Equat, Perm 614990, Russia
基金
俄罗斯基础研究基金会;
关键词
functional differential equations; periodic solutions; periodic boundary value problem; estimates of solutions;
D O I
10.1186/1687-2770-2014-119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inequalities for periodic solutions of first-order functional differential equations are obtained. These inequalities are best possible in a certain sense.
引用
收藏
页数:12
相关论文
共 23 条
[1]  
Agarwal RP, 2012, NONSCILLATION THEORY
[2]  
[Anonymous], GEORGIAN MATH J
[3]  
Azbelev N.V., 2007, Introduction to the theory of functional differential equations: methods and applications
[4]   Periodic solutions of first order functional differential equations with periodic deviations [J].
Bai, Dingyong ;
Xu, Yuantong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (09) :1361-1366
[5]   On a periodic-type boundary value problem for first-order nonlinear functional differential equations [J].
Hakl, R ;
Lomtatidze, A ;
Sremr, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (03) :425-447
[6]   On periodic solutions of first order linear functional differential equations [J].
Hakl, R ;
Lomtatidze, A ;
Puza, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (07) :929-945
[7]  
Hakl R, 2002, NONLINEAR OSCIL, V5, P408, DOI DOI 10.1023/A:1022304626385
[8]  
Hakl R, 2002, MEM DIFFERENTIAL EQU, V26, P65
[9]  
Hakl R, 2004, ARCH MATH BRNO, V40, P89
[10]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]