Explicit examples of constant curvature surfaces in the supersymmetric CP2 sigma model

被引:0
作者
Yurdusen, Ismet [1 ]
机构
[1] Hacettepe Univ, Fac Sci, Dept Math, Ankara, Turkey
关键词
Supersymmetric; curvature; sigma models; GENERAL CLASSICAL-SOLUTIONS;
D O I
10.55730/1300-0098.3282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The surfaces constructed from the holomorphic solutions of the supersymmetric (susy) CPN-1 sigma model are studied. By obtaining compact general expansion formulae having neat forms due to the properties of the superspace in which this model is described, the explicit expressions for the components of the radius vector as well as the elements of the metric and the Gaussian curvature are given in a rather natural manner. Several examples of constant curvature surfaces for the susy CP2 sigma model are presented.
引用
收藏
页码:2485 / 2499
页数:16
相关论文
共 41 条
[1]  
Amit D., 1978, Field Theory, the Renormalization Group and Critical Phenomena
[2]  
[Anonymous], 1868, GESELLSCHAFT WISSENS
[3]  
[Anonymous], 2001, LECT MATH
[4]   ON CONFORMAL MINIMAL IMMERSIONS OF S2 INTO CPN [J].
BOLTON, J ;
JENSEN, GR ;
RIGOLI, M ;
WOODWARD, LM .
MATHEMATISCHE ANNALEN, 1988, 279 (04) :599-620
[5]   The Weierstrass-Enneper system for constant mean curvature surfaces and the completely integrable sigma model [J].
Bracken, P ;
Grundland, AM ;
Martina, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) :3379-3403
[6]  
Chorin A. J., 1993, MATH INTRO FLUID MEC, DOI 10.1007/978-1-4612-0883-9
[7]   CONFINEMENT AND CHIRAL SYMMETRY BREAKING IN CPN-1 MODELS WITH QUARKS [J].
DADDA, A ;
DIVECCHIA, P ;
LUSCHER, M .
NUCLEAR PHYSICS B, 1979, 152 (01) :125-144
[8]   A-1-N EXPANDABLE SERIES OF NONLINEAR SIGMA-MODELS WITH INSTANTONS [J].
DADDA, A ;
LUSCHER, M ;
DIVECCHIA, P .
NUCLEAR PHYSICS B, 1978, 146 (01) :63-76
[9]   General solutions of the supersymmetric CP2 sigma model and its generalisation to CPN-1 [J].
Delisle, L. ;
Hussin, V. ;
Zakrzewski, W. J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
[10]   Constant curvature surfaces of the supersymmetric sigma model [J].
Delisle, L. ;
Hussin, V. ;
Yurdusen, I. ;
Zakrzewski, W. J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)