Power amplifier protection by adaptive output power control

被引:7
作者
van Bezooijen, Andre [1 ]
van Straten, Freek
Mahmoudi, Reza
van Roermund, Arthur H. M.
机构
[1] NXP Semicond, NL-6534 AE Nijmegen, Netherlands
[2] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
关键词
adaptive control; avalanche breakdown; over-current; over-voltage; power amplifiers; protection; temperature;
D O I
10.1109/JSSC.2007.900783
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cellular phone power amplifiers (PAs) operate in strongly varying environments and have to withstand extreme conditions. To avoid destructive breakdown a generic protection concept is proposed that is based on adaptive control of the output power. It provides over-voltage, over-temperature, and/or over-current protection by detection of the collector peak voltage, die temperature, and/or collector current to reduce the effective power control voltage once a threshold level is crossed. By applying protections, PAs can be implemented in low-cost silicon technology competitively to GaAs HBT implementations. In addition, requirements on package thermal resistance are relaxed. In this paper a theoretical analysis is given on the behavior of a class-AB amplifier under mismatch conditions. Measurement results on a silicon bipolar power transistor with integrated protection circuits are presented, proving the concept of adaptive protection. For a supply voltage of 5 V and nominal output power of 2 W no breakdown is observed for a VSWR of 10 over all phases when output power is adaptively reduced by 2.7 dB at most.
引用
收藏
页码:1834 / 1841
页数:8
相关论文
共 20 条
[1]   Thermal stability of emitter ballasted HBT's [J].
Adlerstein, MG .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (08) :1653-1655
[2]  
BOYLE KR, 2003, P 12 INT S ANT PROP, P35
[3]  
de Graauw AJM, 2006, IEEE BIPOL BICMOS, P21
[4]   QUBiC4plus: A cost-effective BiCMOS manufacturing technology with elite passive enhancements optimized for 'silicon-based' RF-system-in-package environment [J].
Deixler, P ;
Letavic, T ;
Mahatdejkul, T ;
Bouttement, Y ;
Brock, R ;
Tan, PC ;
Saikumar, V ;
Rodriguez, A ;
Colclaser, R ;
Kellowan, P ;
Sun, H ;
Bell, N ;
Bower, D ;
Yao, A ;
van Langevelde, R ;
Vanhoucke, T ;
van Noort, WD ;
Hurkx, GAM ;
Crespo, D ;
Biard, C ;
Bardy, S ;
Slotboom, JW .
PROCEEDINGS OF THE 2005 BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING, 2005, :272-275
[5]   EMITTER BALLASTING RESISTOR DESIGN FOR, AND CURRENT HANDLING CAPABILITY OF ALGAAS/GAAS POWER HETEROJUNCTION BIPOLAR-TRANSISTORS [J].
GAO, G ;
UNLU, MS ;
MORKOC, H ;
BLACKBURN, DL .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1991, 38 (02) :185-196
[6]   Current status and future trends of SiGeBiCMOS technology [J].
Harame, DL ;
Ahlgren, DC ;
Coolbaugh, DD ;
Dunn, JS ;
Freeman, GG ;
Gillis, JD ;
Groves, RA ;
Hendersen, GN ;
Johnson, RA ;
Joseph, AJ ;
Subbanna, S ;
Victor, AM ;
Watson, KM ;
Webster, CS ;
Zampardi, PJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (11) :2575-2594
[7]   The maximum operating region in SiGeHBTs for RF power amplifiers [J].
Inoue, A ;
Nakatsuka, S ;
Hattori, R ;
Matsuda, Y .
2002 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2002, :1023-1026
[8]  
KREYSZIG E, 1988, ADV ENG MATH, P588
[9]   The safe operating area of GaAs-based heterojunction bipolar transistors [J].
Lee, Chien-Ping ;
Chati, Frank H. E. ;
Ma, Wenlong ;
Wang, Nanlei Larry .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (11) :2681-2688
[10]  
Pedersen GF, 1999, IEEE VTS VEH TECHNOL, P1580, DOI 10.1109/VETEC.1999.780654