A family of multimodal dynamic maps

被引:17
作者
Campos-Canton, E. [1 ]
Femat, R. [1 ]
Pisarchik, A. N. [2 ]
机构
[1] Inst Potosino Invest Cient & Tecnol AC, Div Matemat Aplicadas, San Luis Potosi 78216, Slp, Mexico
[2] Ctr Invest Opt, Leon 37150, Gto, Mexico
关键词
Chaos; Logistic map; Bifurcations; Multimodal maps; IMAGE ENCRYPTION; CHAOTIC MAPS;
D O I
10.1016/j.cnsns.2010.12.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a family of multimodal logistic maps with a single parameter. The maps domain is partitioned in subdomains according to the maximal number of modals to be generated and each subdomain contains one logistic map. The number of members of a family is equal to the maximal number of modals. Bifurcation diagrams and basins of attraction of fixed points are constructed for the family of chaotic logistic maps. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3457 / 3462
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 1838, CORRESP MATH PHYS, DOI 10.1007/bf02309004
[2]   Estimation of the control parameter from symbolic sequences: Unimodal maps with variable critical point [J].
Arroyo, David ;
Alvarez, Gonzalo ;
Amigo, Jose Maria .
CHAOS, 2009, 19 (02)
[3]   Bifurcations in two-dimensional piecewise smooth maps - Theory and applications in switching circuits [J].
Banerjee, S ;
Ranjan, P ;
Grebogi, C .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (05) :633-643
[4]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[5]   A simple electronic circuit realization of the tent map [J].
Campos-Canton, I. ;
Campos-Canton, E. ;
Murguia, J. S. ;
Rosu, H. C. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (01) :12-16
[6]  
de Melo W., 1993, ERGEBNISSE MATH IHRE, V25
[7]   CHAOS IN A CURRENT-MODE CONTROLLED BOOST DC-DC CONVERTER [J].
DEANE, JHB .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1992, 39 (08) :680-683
[8]  
Elaydi S., 2000, DISCRETE CHAOS
[9]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[10]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467