Quality assessment and interference detection in targeted mass spectrometry data using machine learning

被引:21
作者
Eshghi, Shadi Toghi [1 ]
Auger, Paul [1 ]
Mathews, W. Rodney [1 ]
机构
[1] Genentech Inc, OMNI Biomarker Dev, San Francisco, CA 94080 USA
关键词
Targeted proteomics; Quantitative; Mass spectrometry; Bioinformatics; Automated analysis; Interference detection; Quality control; Machine learning; HIGH-RESOLUTION; PROTEOMICS; QUANTIFICATION; PERFORMANCE; INSTRUMENT; PEPTIDE;
D O I
10.1186/s12014-018-9209-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Advances in the field of targeted proteomics and mass spectrometry have significantly improved assay sensitivity and multiplexing capacity. The high-throughput nature of targeted proteomics experiments has increased the rate of data production, which requires development of novel analytical tools to keep up with data processing demand. Currently, development and validation of targeted mass spectrometry assays require manual inspection of chromatographic peaks from large datasets to ensure quality, a process that is time consuming, prone to inter- and intra-operator variability and limits the efficiency of data interpretation from targeted proteomics analyses. To address this challenge, we have developed TargetedMSQC, an R package that facilitates quality control and verification of chromatographic peaks from targeted proteomics datasets. This tool calculates metrics to quantify several quality aspects of a chromatographic peak, e.g. symmetry, jaggedness and modality, co-elution and shape similarity of monitored transitions in a peak group, as well as the consistency of transitions' ratios between endogenous analytes and isotopically labeled internal standards and consistency of retention time across multiple runs. The algorithm takes advantage of supervised machine learning to identify peaks with interference or poor chromatography based on a set of peaks that have been annotated by an expert analyst. Using TargetedMSQC to analyze targeted proteomics data reduces the time spent on manual inspection of peaks and improves both speed and accuracy of interference detection. Additionally, by allowing the analysts to customize the tool for application on different datasets,TargetedMSQC gives the users the flexibility to define the acceptable quality for specific datasets. Furthermore, automated and quantitative assessment of peak quality offers a more objective and systematic framework for high throughput analysis of targeted mass spectrometry assay datasets and is a step towards more robust and faster assay implementation.
引用
收藏
页数:13
相关论文
共 28 条
[1]   Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS) [J].
Abbatiello, Susan E. ;
Mani, D. R. ;
Schilling, Birgit ;
MacLean, Brendan ;
Zimmerman, Lisa J. ;
Feng, Xingdong ;
Cusack, Michael P. ;
Sedransk, Nell ;
Hall, Steven C. ;
Addona, Terri ;
Allen, Simon ;
Dodder, Nathan G. ;
Ghosh, Mousumi ;
Held, Jason M. ;
Hedrick, Victoria ;
Inerowicz, H. Dorota ;
Jackson, Angela ;
Keshishian, Hasmik ;
Kim, Jong Won ;
Lyssand, John S. ;
Riley, C. Paige ;
Rudnick, Paul ;
Sadowski, Pawel ;
Shaddox, Kent ;
Smith, Derek ;
Tomazela, Daniela ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Whitwell, Corbin A. ;
You, Jinsam ;
Zhang, Shucha ;
Kinsinger, Christopher R. ;
Mesri, Mehdi ;
Rodriguez, Henry ;
Borchers, Christoph H. ;
Buck, Charles ;
Fisher, Susan J. ;
Gibson, Bradford W. ;
Liebler, Daniel ;
MacCoss, Michael ;
Neubert, Thomas A. ;
Paulovich, Amanda ;
Regnier, Fred ;
Skates, Steven J. ;
Tempst, Paul ;
Wang, Mu ;
Carr, Steven A. .
MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (09) :2623-2639
[2]   Automated Detection of Inaccurate and Imprecise Transitions in Peptide Quantification by Multiple Reaction Monitoring Mass Spectrometry [J].
Abbatiello, Susan E. ;
Mani, D. R. ;
Keshishian, Hasmik ;
Carr, Steven A. .
CLINICAL CHEMISTRY, 2010, 56 (02) :291-305
[3]   Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma [J].
Addona, Terri A. ;
Abbatiello, Susan E. ;
Schilling, Birgit ;
Skates, Steven J. ;
Mani, D. R. ;
Bunk, David M. ;
Spiegelman, Clifford H. ;
Zimmerman, Lisa J. ;
Ham, Amy-Joan L. ;
Keshishian, Hasmik ;
Hall, Steven C. ;
Allen, Simon ;
Blackman, Ronald K. ;
Borchers, Christoph H. ;
Buck, Charles ;
Cardasis, Helene L. ;
Cusack, Michael P. ;
Dodder, Nathan G. ;
Gibson, Bradford W. ;
Held, Jason M. ;
Hiltke, Tara ;
Jackson, Angela ;
Johansen, Eric B. ;
Kinsinger, Christopher R. ;
Li, Jing ;
Mesri, Mehdi ;
Neubert, Thomas A. ;
Niles, Richard K. ;
Pulsipher, Trenton C. ;
Ransohoff, David ;
Rodriguez, Henry ;
Rudnick, Paul A. ;
Smith, Derek ;
Tabb, David L. ;
Tegeler, Tony J. ;
Variyath, Asokan M. ;
Vega-Montoto, Lorenzo J. ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Wang, Mu ;
Whiteaker, Jeffrey R. ;
Zhao, Lei ;
Anderson, N. Leigh ;
Fisher, Susan J. ;
Liebler, Daniel C. ;
Paulovich, Amanda G. ;
Regnier, Fred E. ;
Tempst, Paul ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (07) :633-U85
[4]   Quantitative mass spectrometry in proteomics: a critical review [J].
Bantscheff, Marcus ;
Schirle, Markus ;
Sweetman, Gavain ;
Rick, Jens ;
Kuster, Bernhard .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (04) :1017-1031
[5]   An Automated Pipeline to Monitor System Performance in Liquid Chromatography-Tandem Mass Spectrometry Proteomic Experiments [J].
Bereman, Michael S. ;
Beri, Joshua ;
Sharma, Vagisha ;
Nathe, Cory ;
Eckels, Josh ;
MacLean, Brendan ;
MacCoss, Michael J. .
JOURNAL OF PROTEOME RESEARCH, 2016, 15 (12) :4763-4769
[6]   MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments [J].
Choi, Meena ;
Chang, Ching-Yun ;
Clough, Timothy ;
Broudy, Daniel ;
Killeen, Trevor ;
MacLean, Brendan ;
Vitek, Olga .
BIOINFORMATICS, 2014, 30 (17) :2524-2526
[7]   Advances in mass spectrometry-based clinical biomarker discovery [J].
Crutchfield, Christopher A. ;
Thomas, Stefani N. ;
Sokoll, Lori J. ;
Chan, Daniel W. .
CLINICAL PROTEOMICS, 2016, 13
[8]   MSstatsQC: Longitudinal System Suitability Monitoring and Quality Control for Targeted Proteomic Experiments [J].
Dogu, Eralp ;
Mohammad-Taheri, Sara ;
Abbatiello, Susan E. ;
Bereman, Michael S. ;
MacLean, Brendan ;
Schilling, Birgit ;
Vitek, Olga .
MOLECULAR & CELLULAR PROTEOMICS, 2017, 16 (07) :1335-1347
[9]   Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges [J].
Fuezery, Anna K. ;
Levin, Joshua ;
Chan, Maria M. ;
Chan, Daniel W. .
CLINICAL PROTEOMICS, 2013, 10
[10]  
Grebe Stefan Kg, 2011, Clin Biochem Rev, V32, P5