THE REGULARITY CRITERIA ON THE MAGNETIC FIELD TO THE 3D INCOMPRESSIBLE MHD EQUATIONS

被引:1
|
作者
Guo, Xiangxiang [1 ]
Du, Yi [1 ]
Lu, Peng [2 ]
机构
[1] JiNan Univ, Dept Math, Guangzhou 510632, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
关键词
Incompressible MHD equations in 3D; Regularity criteria; ONE-COMPONENT REGULARITY; WEAK SOLUTIONS; ONE VELOCITY; SYSTEM; DIMENSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note is devoted to studying the regularity conditions of the mild solution (u,B) to the 3D incompressible MHD equations. More precisely, for the 3D incompressible MHD equations, [He and Xin, J. Diff. Eqs., 213(2):235-254, 2005] (see also [Zhou, Discrete Contin. Dyn. Syst., 12:881-886, 2005]) proved that the velocity field is dominant in the MHD fluids; meanwhile, the effect of the magnetic field B is vague. In this note, we shall establish the regularity criteria for the MHD equations in terms of integral(T)(0)* parallel to u(3)parallel to(p)((H) over dot1/2+2/p(R3)) + parallel to vertical bar partial derivative(3)vertical bar(-1/2-delta)Bh parallel to(p)((H) over dot 1+2/p+delta(R3)) ds < infinity, with p is an element of (2, infinity), delta = 3(1/r - 1/2) > 0, here r sufficiently close to 2. This result follows along the lines of [Chemin and Zhang, Ann. Sci. Ec Norm Super, 49:131-167, 2016], [Chemin et al., Arch. Ration Mech. Anal., 224(3):871-905, 2017] and [Han et al., Arch. Ration. Mech. Anal., 231:939-970, 2019], which partially improved the works of [Yamazaki, Bull. Sci. Math., 140:575-614, 2016] and [Liu, J. Diff. Eqs., 260:6989-7019, 2016].
引用
收藏
页码:2257 / 2280
页数:24
相关论文
共 50 条