Higher-order Chromosome Structures Investigated by Polymer Physics in Cellular Morphogenesis and Differentiation

被引:11
|
作者
Esposito, Andrea [1 ,2 ]
Chiariello, Andrea M. [1 ,2 ]
Conte, Mattia [1 ,2 ]
Fiorillo, Luca [1 ,2 ]
Musella, Francesco [1 ,2 ]
Sciarretta, Renato [1 ,2 ]
Bianco, Simona [1 ,2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Fis, I-80126 Naples, Italy
[2] Complesso Univ Monte St Angelo, INFN Napoli, I-80126 Naples, Italy
基金
美国国家卫生研究院; 欧盟地平线“2020”;
关键词
Hierarchical folding; Genome architecture; Principled approach; Structural variants; Pitx1; PHASE-SEPARATION; CHROMATIN; GENOME; DOMAINS; ORGANIZATION; ARCHITECTURE; PRINCIPLES; BINDING; MODELS;
D O I
10.1016/j.jmb.2019.12.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Experimental advances in Molecular Biology demonstrated that chromatin architecture and gene regulation are deeply related. Hi-C data, for instance, returned a scenario where chromosomes form a complex pattern of interactions, including TADs, metaTADs, and compartments, correlated with genomic and epigenomic features. Here, we discuss the emerging hierarchical organization of chromatin and show how it remains partially conserved during mouse neuronal differentiation with changes highly related to modifications in gene expression. In this scenario, models of polymer physics, such as the Strings & Binders (SBS) model, can be a crucial instrument to understand the molecular mechanisms underlying the formation of such a higher order 3D structure. In particular, we focus on the case study of the murine Pitx1 genomic region. At this locus, two alternative spatial conformations take place in the hindlimb and forelimb tissues, corresponding to two different transcriptional states of Pitxl. We finally show how the structural variants can affect the locus 3D organization leading to ectopic gene expression and limb malformations. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:701 / 711
页数:11
相关论文
共 50 条
  • [1] Detecting higher-order chromosome interactions by polymer modeling
    Conte, Mattia
    Bianco, Simona
    Esposito, Andrea
    Abraham, Alex
    Guha, Sougata
    Vercellone, Francesca
    Fontana, Andrea
    Di Pierno, Florinda
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (01):
  • [2] INVOLVEMENT OF HIGHER-ORDER CHROMATIN STRUCTURES IN METAPHASE CHROMOSOME ORGANIZATION
    LABHART, P
    KOLLER, T
    WUNDERLI, H
    CELL, 1982, 30 (01) : 115 - 121
  • [3] INVOLVEMENT OF HIGHER-ORDER CHROMATIN STRUCTURES IN METAPHASE CHROMOSOME ORGANIZATION
    LABHART, P
    WUNDERLI, H
    EXPERIENTIA, 1982, 38 (06): : 743 - 743
  • [4] GENERALIZED HIGHER-ORDER DIFFERENTIATION
    BARNDORFFNIELSEN, OE
    BLAESILD, P
    MORA, M
    ACTA APPLICANDAE MATHEMATICAE, 1989, 16 (03) : 243 - 259
  • [5] Higher-Order Partial Differentiation
    Endou, Noboru
    Okazaki, Hiroyuki
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2012, 20 (02): : 113 - 124
  • [6] Precision physics and higher-order calculations
    Wackeroth, Doreen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2008, 17 (05): : 845 - 869
  • [7] HIGHER-ORDER CHROMOSOME STRUCTURE IN YEAST
    YANAGIDA, M
    JOURNAL OF CELL SCIENCE, 1990, 96 : 1 - 3
  • [8] Higher-Order Quadruplex Structures
    Petraccone, Luigi
    QUADRUPLEX NUCLEIC ACIDS, 2013, 330 : 23 - 46
  • [9] On higher-order differentiation in nonlinear mechanics
    Charpentier, I.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (02): : 221 - 232
  • [10] The physics of higher-order interactions in complex systems
    Battiston, Federico
    Amico, Enrico
    Barrat, Alain
    Bianconi, Ginestra
    Ferraz de Arruda, Guilherme
    Franceschiello, Benedetta
    Iacopini, Iacopo
    Kefi, Sonia
    Latora, Vito
    Moreno, Yamir
    Murray, Micah M.
    Peixoto, Tiago P.
    Vaccarino, Francesco
    Petri, Giovanni
    NATURE PHYSICS, 2021, 17 (10) : 1093 - 1098