A new integrable nonlocal modified KdV equation: Abundant solutions with distinct physical structures

被引:15
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
Nonlocal modified KdV equation; Soliton solutions; Periodic solutions; Exponential solutions; MULTIPLE-SOLITON-SOLUTIONS;
D O I
10.1016/j.joes.2016.11.001
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work we study a new integrable nonlocal modified Korteweg-de Vries equation (mKdV) which arises from a reduction of the AKNS scattering problem. We use a variety of distinct techniques to determine abundant solutions with distinct physical structures. We show that this nonlocal equation possesses a family of traveling solitary wave solutions that include solitons, kinks, periodic and singular solutions. (C) 2017 Published by Elsevier B.V. on behalf of Shanghai Jiaotong University.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 19 条
[1]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[2]   Solitary waves for power-law regularized long-wave equation and R(m,n) equation [J].
Biswas, Anjan .
NONLINEAR DYNAMICS, 2010, 59 (03) :423-426
[3]   Solitary waves of Boussinesq equation in a power law media [J].
Biswas, Anjan ;
Milovic, Daniela ;
Ranasinghe, Arjuna .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (11) :3738-3742
[4]   Symbolic methods to construct exact solutions of nonlinear partial differential equations [J].
Hereman, W ;
Nuseir, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :13-27
[5]  
Hirota R., 2004, The direct method in soliton theory
[6]   On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions [J].
Ji, Jia-Liang ;
Zhu, Zuo-Nong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :699-708
[7]   Nonlinear evolution-type equations and their exact solutions using inverse variational methods [J].
Kara, AH ;
Khalique, CM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (21) :4629-4636
[8]   Solutions and conservation laws of Benjamin-Bona-Mahony-Peregrine equation with power-law and dual power-law nonlinearities [J].
Khalique, Chaudry Masood .
PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (03) :413-427
[9]   A numerical approach for solving an extended Fisher-Kolomogrov-Petrovskii-Piskunov equation [J].
Khuri, S. A. ;
Sayfy, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) :2081-2089
[10]   Soliton and periodic solutions for higher order wave equations of KdV type (I) [J].
Khuri, SA .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :25-32