An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9

被引:43
作者
Wang, Han [1 ]
Park, Heenam [1 ]
Liu, Jonathan [1 ]
Sternberg, Paul W. [1 ]
机构
[1] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
来源
G3-GENES GENOMES GENETICS | 2018年 / 8卷 / 11期
关键词
CRISPR; Cas9; C; elegans; null allele; STOP-IN; genome editing; C; ELEGANS; CRISPR-CAS9; MUTATION; TOOLKIT; CONVERSION; GENETICS; NEURONS;
D O I
10.1534/g3.118.200662
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Null mutants are essential for analyzing gene function. Here, we describe a simple and efficient method to generate Caenorhabditis elegans null mutants using CRISPR/Cas9 and short single stranded DNA oligo repair templates to insert a universal 43-nucleotide-long knock-in cassette (STOP-IN) into the early exons of target genes. This STOP-IN cassette has stop codons in all three reading frames and leads to frameshifts, which will generate putative null mutations regardless of the reading frame of the insertion position in exons. The STOP-IN cassette also contains an exogenous Cas9 target site that allows further genome editing and provides a unique sequence that simplifies the identification of successful insertion events via PCR. As a proof of concept, we inserted the STOP-IN cassette at a Cas9 target site in aex-2 to generate new putative null alleles by injecting preassembled Cas9 ribonucleoprotein and a short synthetic single stranded DNA repair template containing the STOP-IN cassette and two approximate to 35-nucleotide-long homology arms identical to the sequences flanking the Cas9 cut site. We showed that these new aex-2 alleles phenocopied an existing loss-of-function allele of aex-2. We further showed that the new aex-2 null alleles could be reverted back to the wild-type sequence by targeting the exogenous Cas9 cut site included in the STOP-IN cassette and providing a single stranded wild-type DNA repair oligo. We applied our STOP-IN method to generate new putative null mutants for 20 additional genes, including three pharyngeal muscle-specific genes (clik-1, clik-2, and clik-3), and reported a high insertion rate (46%) based on the animals we screened. We showed that null mutations of clik-2 cause recessive lethality with a severe pumping defect and clik-3 null mutants have a mild pumping defect, while clik-1 is dispensable for pumping. We expect that the knock-in method using the STOP-IN cassette will facilitate the generation of new null mutants to understand gene function in C. elegans and other genetic model organisms.
引用
收藏
页码:3607 / 3616
页数:10
相关论文
共 44 条
  • [1] Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans
    Arribere, Joshua A.
    Bell, Ryan T.
    Fu, Becky X. H.
    Artiles, Karen L.
    Hartman, Phil S.
    Fire, Andrew Z.
    [J]. GENETICS, 2014, 198 (03) : 837 - U842
  • [2] Au V., 2018, BioRxiv, P359588, DOI DOI 10.1101/359588
  • [3] Large-Scale Screening for Targeted Knockouts in the Caenorhabditis elegans Genome
    Barstead, Robert
    Moulder, Gary
    Cobb, Beth
    Frazee, Stephen
    Henthorn, Diane
    Holmes, Jeff
    Jerebie, Daniela
    Landsdale, Martin
    Osborn, Jamie
    Pritchett, Cherilyn
    Robertson, James
    Rummage, John
    Stokes, Ed
    Vishwanathan, Malani
    Mitani, Shohei
    Gengyo-Ando, Keiko
    Funatsu, Osamu
    Hori, Sayaka
    Imae, Rieko
    Kage-Nakadai, Eriko
    Kobuna, Hiroyuki
    Machiyama, Etsuko
    Motohashi, Tomoko
    Otori, Muneyoshi
    Suehiro, Yuji
    Yoshina, Sawako
    Moerman, Donald
    Edgley, Mark
    Adair, Ryan
    Allan, B. J.
    Au, Vinci
    Chaudhry, Iasha
    Cheung, Rene
    Dadivas, Owen
    Eng, Simon
    Fernando, Lisa
    Fisher, Angela
    Flibotte, Stephane
    Gilchrist, Erin
    Hay, Allison
    Huang, Peter
    Hunt, Rebecca Worsley
    Kwitkowski, Christine
    Lau, Joanne
    Lee, Norris
    Liu, Lucy
    Lorch, Adam
    Luck, Candy
    Maydan, Jason
    McKay, Sheldon
    [J]. G3-GENES GENOMES GENETICS, 2012, 2 (11): : 1415 - 1425
  • [4] BRENNER S, 1974, GENETICS, V77, P71
  • [5] Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination
    Chen, Changchun
    Fenk, Lorenz A.
    de Bono, Mario
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (20) : e193
  • [6] Chen X. Y., 2014, SCI REP, V4, P1, DOI DOI 10.1038/srep07581
  • [7] Transgene-Free Genome Editing in Caenorhabditis elegans Using CRISPR-Cas
    Chiu, Hui
    Schwartz, Hillel T.
    Antoshechkin, Igor
    Sternberg, Paul W.
    [J]. GENETICS, 2013, 195 (03): : 1167 - 1171
  • [8] Heritable Gene Knockout in Caenorhabditis elegans by Direct Injection of Cas9-sgRNA Ribonucleoproteins
    Cho, Seung Woo
    Lee, Jihyun
    Carroll, Dana
    Kim, Jin-Soo
    Lee, Junho
    [J]. GENETICS, 2013, 195 (03) : 1177 - +
  • [9] Multiplex Genome Engineering Using CRISPR/Cas Systems
    Cong, Le
    Ran, F. Ann
    Cox, David
    Lin, Shuailiang
    Barretto, Robert
    Habib, Naomi
    Hsu, Patrick D.
    Wu, Xuebing
    Jiang, Wenyan
    Marraffini, Luciano A.
    Zhang, Feng
    [J]. SCIENCE, 2013, 339 (6121) : 819 - 823
  • [10] A Transparent Window into Biology: A Primer on Caenorhabditis elegans
    Corsi, Ann K.
    Wightman, Bruce
    Chalfie, Martin
    [J]. GENETICS, 2015, 200 (02) : 387 - 407