CsiNet-Plus Model with Truncation and Noise on CSI Feedback

被引:3
作者
Liu, Feng [1 ]
He, Xuecheng [1 ]
Li, Conggai [1 ]
Xu, Yanli [1 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
massive MIMO; CSI feedback; truncation; channel noise; deep learning;
D O I
10.1587/transfun.2019EAL2123
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For the frequency-division-duplex (FDD)-based massive multiple-input multiple-output (MIMO) systems, channel state information (CSI) feedback plays a critical role. Although deep learning has been used to compress the CSI feedback, some issues like truncation and noise still need further investigation. Facing these practical concerns, we propose an improved model (called CsiNet-Plus), which includes a truncation process and a channel noise process. Simulation results demonstrate that the CsiNet-Plus outperforms the existing CsiNet. The performance interchangeability between truncated decimal digits and the signal-to-noise-ratio helps support flexible configuration.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 2018, IEEE J-STSP, DOI DOI 10.1109/JSTSP.2017.2784180
[2]  
[Anonymous], 2019, ARXIV190702942
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]   Deep Autoencoder Based CSI Feedback With Feedback Errors and Feedback Delay in FDD Massive MIMO Systems [J].
Jang, Youngrok ;
Kong, Gyuyeol ;
Jung, Minchae ;
Choi, Sooyong ;
Kim, Il-Min .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :833-836
[5]   An End-to-End Compression Framework Based on Convolutional Neural Networks [J].
Jiang, Feng ;
Tao, Wen ;
Liu, Shaohui ;
Ren, Jie ;
Guo, Xun ;
Zhao, Debin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) :3007-3018
[6]   CSI Feedback Based on Deep Learning for Massive MIMO Systems [J].
Liao, Yong ;
Yao, Haimei ;
Hua, Yuanxiao ;
Li, Chunguo .
IEEE ACCESS, 2019, 7 :86810-86820
[7]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[8]   Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback [J].
Liu, Zhenyu ;
Zhang, Lin ;
Ding, Zhi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :889-892
[9]   MIMO Channel Information Feedback Using Deep Recurrent Network [J].
Lu, Chao ;
Xu, Wei ;
Shen, Hong ;
Zhu, Jun ;
Wang, Kezhi .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (01) :188-191
[10]  
Ping-Heng Kuo, 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC), P492, DOI 10.1109/WCNC.2012.6214417