Renormalized self-intersection local time for fractional Brownian motion

被引:95
作者
Hu, YZ
Nualart, D
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Univ Barcelona, Fac Matematiques, E-08007 Barcelona, Spain
关键词
fractional Brownian motion; self-intersection local time; Wiener chaos development; renormalization; central limit theorem;
D O I
10.1214/009117905000000017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let B-t(H) H be a d-dimensional fractional Brownian motion with Hurst parameter H E (0, 1). Assume d ≥ 2. We prove that the renormalized self-intersection local time L = ∫(T)(0) ∫(t)(0) δ(B-t(H) - B-s(H)) ds dt - E(∫(T)(0) ∫(t)(0) δ(B-t(H) -B-s(H)) ds dt) exists in L-2 if and only if H < 3/(2d), which generalizes the Varadhan renormalization theorem to any dimension and with any Hurst parameter. Motivated by a result of Yor, we show that in the case 3/4 > H ≥ 3/2d, r(ε)Lε converges in distribution to a normal law N(0, Tσ(2)), as E tends to zero, where Lε, is an approximation of L, defined through (2), and r(ε) = | logε|(-1) if H = 3/(2d), and r(ε) = ε(d-3/(2H)) if 3/(2d) < H.
引用
收藏
页码:948 / 983
页数:36
相关论文
共 16 条
[1]   A remark on non-smoothness of the self-intersection local time of planar Brownian motion [J].
Albeverio, S ;
Hu, YZ ;
Zhou, XY .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (01) :57-65
[2]  
[Anonymous], LOCAL QUANTUM THEORY
[3]   LOCAL NONDETERMINISM AND LOCAL TIMES OF GAUSSIAN PROCESSES [J].
BERMAN, SM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (02) :475-477
[4]  
CALAIS JY, 1987, LECT NOTES MATH, V1247, P375
[5]   The renormalization of self-intersection local times I. The chaos expansion [J].
De Faria, M ;
Drumond, C ;
Streit, L .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2000, 3 (02) :223-236
[6]   LOCAL-TIMES OF SELF-INTERSECTION FOR MULTIDIMENSIONAL BROWNIAN-MOTION [J].
HE, SW ;
YANG, WQ ;
YAO, RQ ;
WANG, JG .
NAGOYA MATHEMATICAL JOURNAL, 1995, 138 :51-64
[7]   Exponential integrability and application to stochastic quantization [J].
Hu, Y ;
Kallianpur, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 37 (03) :295-353
[8]   ON THE SELF-INTERSECTION LOCAL TIME OF BROWNIAN MOTION-VIA CHAOS EXPANSION [J].
Hu, Yaozhong .
PUBLICACIONS MATEMATIQUES, 1996, 40 (02) :337-350
[9]   Self-intersection local time of fractional Brownian motions - via chaos expansion [J].
Hu, YZ .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2001, 41 (02) :233-250
[10]   CHAOS EXPANSIONS OF DOUBLE INTERSECTION LOCAL TIME OF BROWNIAN-MOTION IN R(D) AND RENORMALIZATION [J].
IMKELLER, P ;
PEREZABREU, V ;
VIVES, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 56 (01) :1-34