The qualitative properties of the Stokes and Navier-Stokes system for the mixed problem in a nonsmooth domain

被引:6
作者
Benes, Michal [1 ]
机构
[1] Czech Tech Univ Prague, Dept Math, Prague 16629 6, Czech Republic
关键词
Navier-Stokes equations; mixed boundary conditions; regularity;
D O I
10.1016/j.matcom.2007.02.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the mixed boundary value problem for the Stokes and steady Navier-Stokes equations in two-dimensional domain with corner points on boundary, where the boundary conditions change their type. Our goal is to prove some regularity results near corner points, where the boundary conditions change. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 50 条
[41]   Domain dependence of solutions to compressible Navier-Stokes equations [J].
Plotnikov, P. I. ;
Sokolowski, J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (04) :1165-1197
[42]   On the rotating Navier-Stokes equations with mixed boundary conditions [J].
Kai Tai Li ;
Rong An .
Acta Mathematica Sinica, English Series, 2008, 24 :577-598
[43]   A hybrid mixed method for the compressible Navier-Stokes equations [J].
Schuetz, Jochen ;
May, Georg .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 :58-75
[44]   On the Rotating Navier-Stokes Equations with Mixed Boundary Conditions [J].
Kai Tai LI Rong AN College of ScienceXian Jiaotong UniversityXian PRChina .
ActaMathematicaSinica(EnglishSeries), 2008, 24 (04) :577-598
[45]   On the rotating Navier-Stokes equations with mixed boundary conditions [J].
Li, Kai Tai ;
An, Rong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) :577-598
[46]   Qualitative properties for the 2-D nonautonomous stochastic Navier-Stokes equations [J].
Li, Dingshi ;
Mi, Shaoyue .
MATHEMATISCHE NACHRICHTEN, 2025, 298 (07) :2085-2104
[47]   Coupling of an Interior Navier-Stokes Problem with an Exterior Oseen Problem [J].
Feistauer, M. ;
Schwab, C. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (01) :1-17
[48]   Navier-stokes equations with navier boundary conditions for a bounded domain in the plane [J].
Kelliher, James P. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :210-232
[49]   Singularities of solutions of the linearized Navier-Stokes system [J].
Shananin, NA .
MATHEMATICAL NOTES, 1998, 63 (3-4) :562-564
[50]   Singularities of solutions of the linearized Navier-Stokes system [J].
N. A. Shananin .
Mathematical Notes, 1998, 63 :562-564