On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation

被引:16
作者
Nguyen, Anh Tuan [1 ]
Hammouch, Zakia [2 ,3 ,4 ]
Karapinar, Erdal [1 ,5 ,6 ]
Tuan, Nguyen Huy [7 ]
机构
[1] Thu Dau Mot Univ, Div Appl Math, Binh Duong, Vietnam
[2] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Univ Moulay Ismail, Cole Normale Suprieure Mekns, Meknes, Morocco
[4] Harran Univ, Dept Math & Sci Educ, Sanliurfa, Turkey
[5] Cankaya Univ, Dept Math, Ankara, Turkey
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[7] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Caputo fractional; fractional derivative; nonlocal condition; pseudoparabolic; semilinear equation;
D O I
10.1002/mma.7743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of pseudoparabolic equations with the nonlocal condition and the Caputo derivative. Two cases of problems (1-2) will be studied, which are linear case and nonlinear case. For the first case, we establish the existence, the uniqueness, and some regularity results by using some estimates technique and Sobolev embeddings. Second, the Banach fixed-point theorem will be applied to the nonlinear case to prove the existence and the uniqueness of the mild solution.
引用
收藏
页码:14791 / 14806
页数:16
相关论文
共 24 条
[1]   A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces [J].
Afshari, Hojjat ;
Karapinar, Erdal .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[2]  
Afshari H, 2015, ELECTRON J DIFFER EQ, P1
[3]   Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations [J].
Arrieta, JM ;
Carvalho, AN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) :285-310
[4]  
Baitiche Z., 2020, Results in Nonlinear Analysis, V3, P167
[5]   A PDE approach to fractional diffusion: a space-fractional wave equation [J].
Banjai, Lehel ;
Otarola, Enrique .
NUMERISCHE MATHEMATIK, 2019, 143 (01) :177-222
[6]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[7]   Fractional elliptic equations, Caccioppoli estimates and regularity [J].
Caffarelli, Luis A. ;
Stinga, Pablo Raul .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (03) :767-807
[8]  
Coleman B.D., 1960, Arch. Rational Mech. Anal., V6, P355, DOI [10.1007/BF00276168, DOI 10.1007/BF00276168]
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   On recovering parabolic diffusions from their time-averages [J].
Dokuchaev, Nikolai .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)