The Cauchy problem for a two-component Novikov equation in the critical Besov space

被引:17
作者
Tang, Hao [1 ]
Liu, Zhengrong [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-component Novikov equation; Cauchy problem; Besov spaces; Local well-posedness; BLOW-UP PHENOMENA; CAMASSA-HOLM; WELL-POSEDNESS; INTEGRABLE EQUATION; GLOBAL EXISTENCE;
D O I
10.1016/j.jmaa.2014.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for a two-component Novikov equation in the critical Besov space B-2,1(5/2). We first derive a new a priori estimate for the 1-D transport equation in B-2,infinity(3/2) which is the endpoint case. Then we apply this a priori estimate and the Osgood lemma to prove the local existence. Moreover, we also show that the solution map no u(0) -> u is Holder continuous in B-2,1(5/2) equipped with weaker topology. It is worth mentioning that our method is different from the previous one that involves extracting a convergent subsequence from an iterative sequence in critical Besov spaces. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 135
页数:16
相关论文
共 35 条
[1]  
[Anonymous], 1998, OXFORD LECT SERIES M
[2]  
[Anonymous], 2004, CRM SERIES
[3]  
[Anonymous], 2010, Theory of Function Spaces
[4]   Operator-valued Fourier multipliers on periodic Besov spaces and applications [J].
Arendt, W ;
Bu, SQ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :15-33
[5]  
Bahouri Hajer, 2011, FOURIER ANAL NONLINE, V343
[6]  
Chen D., CONTIN DY A IN PRESS
[7]   On an integrable two-component Camassa-Holm shallow water system [J].
Constantin, Adrian ;
Ivanov, Rossen I. .
PHYSICS LETTERS A, 2008, 372 (48) :7129-7132
[8]   A note on well-posedness for Camassa-Holm equation [J].
Danchin, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) :429-444
[9]  
Danchin R., 2001, DIFFERENTIAL INTEGRA, V14, P953
[10]  
Dauchin R., 2005, LECT NOTES