Semi-supervised graph-based retargeted least squares regression

被引:3
|
作者
Yuan, Haoliang [1 ]
Zheng, Junjie [1 ]
Lai, Loi Lei [1 ]
Tang, Yuan Yan [2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
关键词
Graph learning; Retargeted least squares regression (ReLSR); Multicategory classification; FACE RECOGNITION; CLASSIFICATION; FRAMEWORK; SELECTION;
D O I
10.1016/j.sigpro.2017.07.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a semi-supervised graph-based retargeted least squares regression model (SSGReLSR) for multicategory classification. The main motivation behind SSGReLSR is to utilize a graph regularization to restrict the regression labels of ReLSR, such that similar samples should have similar regression labels. However, in SSGReLSR, constructing the graph structure and learning the regression matrix are two independent processes, which can't guarantee an overall optimum. To overcome this shortage of SSGReLSR, we also propose a semi-supervised graph learning retargeted least squares regression model (SSGLReLSR), where linear squares regression and graph construction are unified into a same framework to achieve an overall optimum. To optimize our proposed SSGLReLSR, an efficient iteration algorithm is proposed. Extensive experiments results confirm the effectiveness of our proposed methods. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:188 / 193
页数:6
相关论文
共 50 条
  • [21] Graph-based Semi-supervised Classification with CRF and RNN
    Ye, Zhili
    Du, Yang
    Wu, Fengge
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 403 - 408
  • [22] Generalization performance of graph-based semi-supervised classification
    Hong Chen
    LuoQing Li
    Science in China Series A: Mathematics, 2009, 52 : 2506 - 2516
  • [23] Graph-based semi-supervised learning with multiple labels
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2009, 20 (02) : 97 - 103
  • [24] Graph-Based Semi-Supervised Learning: A Comprehensive Review
    Song, Zixing
    Yang, Xiangli
    Xu, Zenglin
    King, Irwin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8174 - 8194
  • [25] Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses
    Zhou, Fan
    Li, Tengfei
    Zhou, Haibo
    Ye, Jieping
    Zhu, Hongtu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [26] Semi-supervised graph-based hyperspectral image classification
    Camps-Valls, Gustavo
    Bandos, Tatyana V.
    Zhou, Dengyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3044 - 3054
  • [27] Generalization performance of graph-based semi-supervised classification
    Chen Hong
    Li LuoQing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (11): : 2506 - 2516
  • [28] Graph-based methods for unsupervised and semi-supervised learning
    Saul, LK
    2005 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), 2005, : 3 - 3
  • [29] Graph-based multimodal semi-supervised image classification
    Xie, Wenxuan
    Lu, Zhiwu
    Peng, Yuxin
    Xiao, Jianguo
    NEUROCOMPUTING, 2014, 138 : 167 - 179
  • [30] Graph-Based Semi-Supervised Learning with Redundant Views
    Gong, Yun-Chao
    Chen, Chuan-Liang
    Tian, Yin-Jie
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1393 - +