Sparse Topical Coding with Sparse Groups

被引:2
作者
Peng, Min [1 ]
Xie, Qianqian [1 ]
Huang, Jiajia [1 ]
Zhu, Jiahui [1 ]
Ouyang, Shuang [1 ]
Huang, Jimin [1 ]
Tian, Gang [1 ]
机构
[1] Wuhan Univ, Sch Comp, Wuhan, Peoples R China
来源
WEB-AGE INFORMATION MANAGEMENT, PT I | 2016年 / 9658卷
关键词
Document representation; Topic model; Sparse coding; Sparse group lasso; REGRESSION; SELECTION;
D O I
10.1007/978-3-319-39937-9_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning a latent semantic representing from a large number of short text corpora makes a profound practical significance in research and engineering. However, it is difficult to use standard topic models in microblogging environments since microblogs have short length, large amount, snarled noise and irregular modality characters, which prevent topic models from using full information of microblogs. In this paper, we propose a novel non-probabilistic topic model called sparse topical coding with sparse groups (STCSG), which is capable of discovering sparse latent semantic representations of large short text corpora. STCSG relaxes the normalization constraint of the inferred representations with sparse group lasso, a sparsity-inducing regularizer, which is convenient to directly control the sparsity of document, topic and word codes. Furthermore, the relaxed non-probabilistic STCSG can be effectively learned with alternating direction method of multipliers (ADMM). Our experimental results on Twitter dataset demonstrate that STCSG performs well in finding meaningful latent representations of short documents. Therefore, it can substantially improve the accuracy and efficiency of document classification.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [21] Sparse Spectrotemporal Coding of Sounds
    David J. Klein
    Peter König
    Konrad P. Körding
    EURASIP Journal on Advances in Signal Processing, 2003
  • [22] The problem of sparse image coding
    Pece, AEC
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2002, 17 (02) : 89 - 108
  • [23] TRANSFORMATION INVARIANT SPARSE CODING
    Morup, Morten
    Schmidt, Mikkel N.
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [24] The Problem of Sparse Image Coding
    Arthur E.C. Pece
    Journal of Mathematical Imaging and Vision, 2002, 17 : 89 - 108
  • [25] SPARSE CODING WITH ANOMALY DETECTION
    Adler, Amir
    Elad, Michael
    Hel-Or, Yacov
    Rivlin, Ehud
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [26] Sparse spectrotemporal coding of sounds
    Klein, DJ
    König, P
    Körding, KP
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2003, 2003 (07) : 659 - 667
  • [27] Deep Denoising Sparse Coding
    Wang, Yijie
    Yang, Bo
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 681 - 685
  • [28] Sparse Coding and Selected Applications
    Hocke J.
    Labusch K.
    Barth E.
    Martinetz T.
    KI - Kunstliche Intelligenz, 2012, 26 (04): : 349 - 355
  • [29] An MDL Framework for Sparse Coding and Dictionary Learning
    Ramirez, Ignacio
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2913 - 2927
  • [30] SPARSE CODING FOR SPEECH RECOGNITION
    Sivaram, G. S. V. S.
    Nemala, Sridhar Krishna
    Elhilali, Mounya
    Trac D. Tran
    Hermansky, Hynek
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4346 - 4349