Determinant structure of the rational solutions for the Painleve II equation

被引:66
作者
Kajiwara, K [1 ]
Ohta, Y [1 ]
机构
[1] HIROSHIMA UNIV, FAC ENGN, DEPT MATH APPL, HIGASHIHIROSHIMA 739, JAPAN
关键词
D O I
10.1063/1.531648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two types of determinant representations of the rational solutions for the Painleve II equation are discussed by using the bilinear formalism. One of them is a representation by the Devisme polynomials, and another one is Hankel determinant representation. They are derived from the determinant solutions of the KP hierarchy and Toda lattice, respectively. (C) 1996 American Institute of Physics.
引用
收藏
页码:4693 / 4704
页数:12
相关论文
共 21 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]  
AIRAULT H, 1979, STUD APPL MATH, V61, P31
[3]  
Devisme J, 1932, CR HEBD ACAD SCI, V195, P936
[4]  
Devisme J, 1932, CR HEBD ACAD SCI, V195, P437
[5]  
DEVISME J, 1932, CR HEBD ACAD SCI, V195, P195
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, V2
[7]  
HIETARINTA J, 1992, NATO ADV SCI I B-PHY, V278, P175
[8]   MONODROMY PRESERVING DEFORMATION OF LINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH RATIONAL COEFFICIENTS .3. [J].
JIMBO, M ;
MIWA, T .
PHYSICA D-NONLINEAR PHENOMENA, 1981, 4 (01) :26-46
[9]   MONODROMY PRESERVING DEFORMATION OF LINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH RATIONAL COEFFICIENTS .1. GENERAL-THEORY AND TAU-FUNCTION [J].
JIMBO, M ;
MIWA, T ;
UENO, K .
PHYSICA D, 1981, 2 (02) :306-352
[10]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001