Two generator subalgebras of Lie algebras

被引:4
作者
Bowman, Kevin
Towers, David A. [1 ]
Varea, Vicente R.
机构
[1] Univ Lancaster, Dept Math, Lancaster LA1 4YF, England
[2] Univ Cent Lancashire, Dept Phys Astron & Math, Preston PR1 2HE, Lancs, England
[3] Univ Zaragoza, Dept Math, E-50009 Zaragoza, Spain
关键词
Lie algebra; two generator; solvable; supersolvable; triangulable;
D O I
10.1080/03081080500472996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [ Thompson, J., 1968, Non- solvable finite groups all of whose local subgroups are solvable. Bulletin of the American Mathematical Society, 74, 383 - 437.], Thompson showed that a finite group G is solvable if and only if every two- generated subgroup is solvable ( Corollary 2, p. 388). Recently, Grunevald et al. [ Grunewald et al., 2000, Two- variable identities in groups and Lie algebras. Rossiiskaya Akademiya Nauk POMI, 272, 161 - 176; 2003. Journal of Mathematical Sciences ( New York), 116, 2972 - 2981.] have shown that the analogue holds for finite- dimensional Lie algebras over infinite fields of characteristic greater than 5. It is a natural question to ask to what extent the two- generated subalgebras determine the structure of the algebra. It is to this question that this article is addressed. Here, we consider the classes of strongly- solvable and of supersolvable Lie algebras, and the property of triangulability.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 2003, J MATH SCI-U TOKYO
[2]   SOME THEOREMS ON SATURATED HOMOMORPHS OF SOLUBLE LIE ALGEBRAS [J].
BARNES, DW ;
NEWELL, ML .
MATHEMATISCHE ZEITSCHRIFT, 1970, 115 (03) :179-&
[3]   On almost nilpotent-by-abelian Lie algebras [J].
Bowman, K ;
Towers, DA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 247 :159-167
[4]   A NOTE ON NONCENTRAL SIMPLE MINIMAL NONABELIAN LIE-ALGEBRAS [J].
ELDUQUE, A .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (07) :1313-1318
[5]  
Elduque A., 1986, CANAD MATH SOC C P, V5, P209
[6]   ON AD-SEMISIMPLE LIE-ALGEBRAS [J].
FARNSTEINER, R .
JOURNAL OF ALGEBRA, 1983, 83 (02) :510-519
[7]  
Gein A. G., 1972, URAL GOS U MAT ZAP, V8, P18
[8]  
Gein A.G., 1987, SOV MATH, V31, P22
[9]  
GEIN AG, 1989, LIE ALGEBRAS CONSTRI
[10]  
GEIN AG, 1985, COMMUN ALGEBRA, V13, P305