The number of prime factors of integers with dense divisors
被引:4
|
作者:
Weingartner, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Southern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USASouthern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USA
Weingartner, Andreas
[1
]
机构:
[1] Southern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USA
Normal order;
Number of prime factors;
Dense divisors;
PRACTICAL NUMBERS;
SIEVE PROBLEM;
D O I:
10.1016/j.jnt.2021.11.003
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We show that for integers n, whose ratios of consecutive divisors are bounded above by an arbitrary constant, the normal order of the number of prime factors is C log log n, where C = (1 - e(-gamma))(-1)= 2.280... and gamma is Euler's constant. We explore several applications and resolve a conjecture of Margenstern about practical numbers. (c) 2021 Elsevier Inc. All rights reserved.
机构:
Sorbonne Univ, Univ Paris Cite, Inst Math, CNRS, Jussieu Paris Rive Gauche, F-75013 Paris, FranceSorbonne Univ, Univ Paris Cite, Inst Math, CNRS, Jussieu Paris Rive Gauche, F-75013 Paris, France
de la Breteche, Regis
Tenenbaum, Gerald
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Inst Elie Cartan, BP 70239, F-54506 Vandoeuvre Les Nancy, FranceSorbonne Univ, Univ Paris Cite, Inst Math, CNRS, Jussieu Paris Rive Gauche, F-75013 Paris, France
机构:
Univ Lorraine, Inst Elie Cartan, BP 70239, F-54506 Vandoeuvre Les Nancy, FranceUniv Lorraine, Inst Elie Cartan, BP 70239, F-54506 Vandoeuvre Les Nancy, France
Tenenbaum, Gerald
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX,
2019,
31
(03):
: 747
-
749
机构:
Univ British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, Canada