Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks

被引:268
作者
Hamilton, S. J. [1 ]
Hauptmann, A. [2 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53233 USA
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Electrical impedance tomography; D-bar methods; deep learning; conductivity imaging; BOUNDARY; RECONSTRUCTIONS; VENTILATION; UNIQUENESS; ERRORS; CHEST; SHAPE;
D O I
10.1109/TMI.2018.2828303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a lowpass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using lowfrequencies in the image recoveryprocess results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that theseCNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to performan additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.
引用
收藏
页码:2367 / 2377
页数:11
相关论文
共 41 条
[1]   Solving ill-posed inverse problems using iterative deep neural networks [J].
Adler, Jonas ;
Oktem, Ozan .
INVERSE PROBLEMS, 2017, 33 (12)
[2]  
[Anonymous], 1988, Applicable Analysis, DOI DOI 10.1080/00036818808839730
[3]  
Antholzer S., 2017, Deep Learning for Photoacoustic Tomography from Sparse Data
[4]  
BEALS R, 1985, P SYMP PURE MATH, V43, P45
[5]   Physiological Effects of the Open Lung Approach in Patients with Early, Mild, Diffuse Acute Respiratory Distress Syndrome [J].
Cinnella, Gilda ;
Grasso, Salvatore ;
Raimondo, Pasquale ;
D'Antini, Davide ;
Mirabella, Lucia ;
Rauseo, Michela ;
Dambrosio, Michele .
ANESTHESIOLOGY, 2015, 123 (05) :1113-1121
[6]   Simultaneous Reconstruction of Outer Boundary Shape and Admittivity Distribution in Electrical Impedance Tomography [J].
Darde, J. ;
Hyvonen, N. ;
Seppanen, A. ;
Staboulis, S. .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01) :176-198
[7]   2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform [J].
DeAngelo, M. ;
Mueller, J. L. .
PHYSIOLOGICAL MEASUREMENT, 2010, 31 (02) :221-232
[8]   Electrical impedance tomography: 3D reconstructions using scattering transforms [J].
Delbary, Fabrice ;
Hansen, Per Christian ;
Knudsen, Kim .
APPLICABLE ANALYSIS, 2012, 91 (04) :737-755
[9]   A REAL-TIME D-BAR ALGORITHM FOR 2-D ELECTRICAL IMPEDANCE TOMOGRAPHY DATA [J].
Dodd, Melody ;
Mueller, Jennifer L. .
INVERSE PROBLEMS AND IMAGING, 2014, 8 (04) :1013-1031
[10]   Isotropic and anisotropic total variation regularization in electrical impedance tomography [J].
Gonzalez, Gerardo ;
Kolehmainen, Ville ;
Seppanen, Aku .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (03) :564-576