Integrated gallium phosphide nonlinear photonics

被引:249
作者
Wilson, Dalziel J. [1 ,2 ]
Schneider, Katharina [1 ]
Hoenl, Simon [1 ]
Anderson, Miles [2 ]
Baumgartner, Yannick [1 ]
Czornomaz, Lukas [1 ]
Kippenberg, Tobias J. [2 ]
Seidler, Paul [1 ]
机构
[1] IBM Res Zurich, Ruschlikon, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Phys, Lausanne, Switzerland
基金
欧盟地平线“2020”;
关键词
FREQUENCY COMB GENERATION; 2ND-HARMONIC GENERATION; GAP; RAMAN; MICROCAVITIES; RESONATORS; SOLITON; GREEN; PUMP;
D O I
10.1038/s41566-019-0537-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gallium phosphide (GaP) is an indirect-bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties-including large chi ((2)) and chi ((3)) coefficients, a high refractive index (>3) and transparency from visible to long-infrared wavelengths (0.55-11 mu m)-its application as an integrated photonics material has been little studied. Here, we introduce GaP-on-insulator as a platform for nonlinear photonics, exploiting a direct wafer-bonding approach to realize integrated waveguides with 1.2dBcm(-1) loss in the telecommunications C-band (on par with Si-on-insulator). High-quality (Q>10(5)), grating-coupled ring resonators are fabricated and studied. Employing a modulation transfer approach, we obtain a direct experimental estimate of the nonlinear index of GaP at telecommunication wavelengths: n(2)=1.1(3)x10(-17)m(2)W(-1). We also observe Kerr frequency comb generation in resonators with engineered dispersion. Parametric threshold powers as low as 3mW are realized, followed by broadband (>100nm) frequency combs with sub-THz spacing, frequency-doubled combs and, in a separate device, efficient Raman lasing. These results signal the emergence of GaP-on-insulator as a novel platform for integrated nonlinear photonics. A scalable solution involving direct wafer-bonding of high-quality, epitaxially grown gallium phosphide to low-index substrates is introduced. The promise of this platform for integrated nonlinear photonics is demonstrated with low-threshold frequency comb generation, frequency-doubled combs and Raman lasing.
引用
收藏
页码:57 / +
页数:7
相关论文
共 51 条
[11]   High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators [J].
Gong, Zheng ;
Bruch, Alexander ;
Shen, Mohan ;
Guo, Xiang ;
Jung, Hojoong ;
Fan, Linran ;
Liu, Xianwen ;
Zhang, Liang ;
Wang, Junxi ;
Li, Jinmin ;
Yan, Jianchang ;
Tang, Hong X. .
OPTICS LETTERS, 2018, 43 (18) :4366-4369
[12]   Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals [J].
Gonzalez-Tudela, A. ;
Hung, C. -L. ;
Chang, D. E. ;
Cirac, J. I. ;
Kimble, H. J. .
NATURE PHOTONICS, 2015, 9 (05) :320-325
[13]   Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform [J].
Gould, Michael ;
Schmidgall, Emma R. ;
Dadgostar, Shabnam ;
Hatami, Fariba ;
Fu, Kai-Mei C. .
PHYSICAL REVIEW APPLIED, 2016, 6 (01)
[14]   Silicon-chip mid-infrared frequency comb generation [J].
Griffith, Austin G. ;
Lau, Ryan K. W. ;
Cardenas, Jaime ;
Okawachi, Yoshitomo ;
Mohanty, Aseema ;
Fain, Romy ;
Lee, Yoon Ho Daniel ;
Yu, Mengjie ;
Phare, Christopher T. ;
Poitras, Carl B. ;
Gaeta, Alexander L. ;
Lipson, Michal .
NATURE COMMUNICATIONS, 2015, 6
[15]   Second harmonic generation in gallium phosphide microdisks on silicon: from strict (4)over-bar to random quasi-phase matching [J].
Guilleme, P. ;
Dumeige, Y. ;
Stodolna, J. ;
Vallet, M. ;
Rohel, T. ;
Letoublon, A. ;
Cornet, C. ;
Ponchet, A. ;
Durand, O. ;
Leger, Y. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (06)
[16]   Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency [J].
Guo, Xiang ;
Zou, Chang-Ling ;
Tang, Hong X. .
OPTICA, 2016, 3 (10) :1126-1131
[17]   Ultrabroadband supercontinuum generation in a CMOS-compatible platform [J].
Halir, R. ;
Okawachi, Y. ;
Levy, J. S. ;
Foster, M. A. ;
Lipson, M. ;
Gaeta, A. L. .
OPTICS LETTERS, 2012, 37 (10) :1685-1687
[18]   Diamond nonlinear photonics [J].
Hausmann, B. J. M. ;
Bulu, I. ;
Venkataraman, V. ;
Deotare, P. ;
Loncar, M. .
NATURE PHOTONICS, 2014, 8 (05) :369-374
[19]   Mode Spectrum and Temporal Soliton Formation in Optical Microresonators [J].
Herr, T. ;
Brasch, V. ;
Jost, J. D. ;
Mirgorodskiy, I. ;
Lihachev, G. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (12)
[20]  
Herr T, 2014, NAT PHOTONICS, V8, P145, DOI [10.1038/nphoton.2013.343, 10.1038/NPHOTON.2013.343]