On static manifolds and related critical spaces with cyclic parallel Ricci tensor

被引:0
|
作者
Baltazar, H. [1 ]
Da Silva, A. [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
关键词
Volume functional; critical metrics; cyclic parallel Ricci tensor; COMPACT RIEMANNIAN-MANIFOLDS; CRITICAL METRICS; SCALAR CURVATURE; UNIQUENESS; EQUATION;
D O I
10.1515/advgeom-2020-0021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify 3-dimensional compact Riemannian manifolds (M-3, g) that admit a non-constant solution to the equation -Delta fg + Hess f - f Ric = mu Ric +lambda g for some special constants (mu, lambda), under the assumption that the manifold has cyclic parallel Ricci tensor. Namely, the structures that we study here are: positive static triples, critical metrics of the volume functional, and critical metrics of the total scalar curvature functional. We also classify n-dimensional critical metrics of the volume functional with non-positive scalar curvature and satisfying the cyclic parallel Ricci tensor condition.
引用
收藏
页码:407 / 416
页数:10
相关论文
共 50 条