A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications

被引:83
作者
Bechini, Renzo [1 ]
Chandrasekar, V. [1 ]
机构
[1] Colorado State Univ, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
BAND POLARIMETRIC RADARS; IN-SITU VERIFICATION; FUZZY-LOGIC; MULTIPARAMETER RADAR; DIFFERENTIAL PHASE; IDENTIFICATION ALGORITHM; WEATHER RADARS; THUNDERSTORMS; MICROPHYSICS; ORIENTATION;
D O I
10.1175/JTECH-D-14-00097.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Most of the recent hydrometeor classification schemes are based on fuzzy logic. When the input radar observations are noisy, the output classification could also be noisy, since the process is bin based and the information from neighboring radar cells is not considered. This paper employs cluster analysis, in combination with fuzzy logic, to improve the hydrometeor classification from dual-polarization radars using a multistep approach. The first step involves a radar-based optimization of an input temperature profile from auxiliary data. Then a first-guess fuzzy logic processing produces the classification to initiate a cluster analysis with contiguity and penalty constraints. The result of the cluster analysis is eventually processed to identify the regions populated with adjacent bins assigned to the same hydrometeor class. Finally, the set of connected regions is passed to the fuzzy logic algorithm for the final classification, exploiting the statistical sample composed by the distribution of the dual-polarization and temperature observations within the regions. Example applications to radar in different environments and meteorological situations, and using different operating frequency bands-namely, S, C, and X bands-are shown. The results are discussed with specific attention to the robustness of the method and the segregation of the data space. Furthermore, the sensitivity to noise and bias in the input variables is also analyzed.
引用
收藏
页码:22 / 47
页数:26
相关论文
共 57 条
  • [51] 2
  • [52] Vivekanandan J, 1999, B AM METEOROL SOC, V80, P381, DOI 10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO
  • [53] 2
  • [54] Algorithm for Estimation of the Specific Differential Phase
    Wang, Yanting
    Chandrasekar, V.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (12) : 2565 - 2578
  • [55] Wolberg G., 1998, CUCS38988
  • [56] Zrnic DS, 2001, J ATMOS OCEAN TECH, V18, P892, DOI 10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO
  • [57] 2