Challenges and Opportunities for Next-Generation Intracortically Based Neural Prostheses

被引:96
作者
Gilja, Vikash [3 ,4 ]
Chestek, Cindy A. [1 ,4 ]
Diester, Ilka [2 ]
Henderson, Jaimie M. [5 ,6 ]
Deisseroth, Karl [7 ,8 ,9 ,10 ]
Shenoy, Krishna V. [1 ,2 ,9 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Stanford Univ, SINTN, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Neurosurg & Neurol, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Neurol Sci, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Bioengn & Psychiat, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Behav Sci, Stanford, CA 94305 USA
[9] Stanford Univ, Neurosci Program, Stanford, CA 94305 USA
[10] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
关键词
BRAIN-MACHINE INTERFACE; MILLISECOND-TIMESCALE; RECORDING-SYSTEM; CORTICAL CONTROL; OPTICAL CONTROL; CONTROL SIGNALS; MOVEMENT; DISCRIMINATION; CIRCUITS; NEURONS;
D O I
10.1109/TBME.2011.2107553
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neural prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding computer cursors, prosthetic arms, and other assistive devices. Intracortical electrode arrays measure action potentials and local field potentials from individual neurons, or small populations of neurons, in the motor cortices and can provide considerable information for controlling prostheses. Despite several compelling proof-of-concept laboratory animal experiments and an initial human clinical trial, at least three key challenges remain which, if left unaddressed, may hamper the translation of these systems into widespread clinical use. We review these challenges: achieving able-bodied levels of performance across tasks and across environments, achieving robustness across multiple decades, and restoring able-bodied quality proprioception and somatosensation. We also describe some emerging opportunities for meeting these challenges. If these challenges can be largely or fully met, intracortically based neural prostheses may achieve true clinical viability and help increasing numbers of disabled patients.
引用
收藏
页码:1891 / 1899
页数:9
相关论文
共 50 条
[21]   Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research [J].
Xiao, Wenjie ;
Li, Peile ;
Kong, Fujiao ;
Kong, Jingyi ;
Pan, Aihua ;
Long, Lili ;
Yan, Xiaoxin ;
Xiao, Bo ;
Gong, Jiaoe ;
Wan, Lily .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2024, 44 (01)
[22]   The rise of targeting chimeras (TACs): next-generation medicines that preempt cellular events [J].
Hollingsworth, Scott ;
Johnson, Scott ;
Khakbaz, Pouyan ;
Meng, Yilin ;
Mouchlis, Varnavas ;
Pierce, Olivia ;
Prytkova, Vera ;
Vik, Erik ;
Weiss, Dahlia ;
Shanmugasundaram, Veerabahu .
MEDICINAL CHEMISTRY RESEARCH, 2023, 32 (07) :1294-1314
[23]   Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces [J].
Khan, Wasid Ullah ;
Shen, Zhenzhen ;
Mugo, Samuel M. ;
Wang, Hongda ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2025, 54 (06) :2832-2880
[24]   Next-generation BCIs: Brain-to-text Communication via Attempted Handwriting [J].
Willett, Francis R. ;
Avansino, Donald T. ;
Hochberg, Leigh R. ;
Henderson, Jaimie M. ;
Shenoy, Krishna V. .
10TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI2022), 2022,
[25]   A modular strategy for next-generation upper-limb sensory-motor neuroprostheses [J].
Shokur, Solaiman ;
Mazzoni, Alberto ;
Schiavone, Giuseppe ;
Weber, Douglas J. ;
Micera, Silvestro .
MED, 2021, 2 (08) :912-937
[26]   Transcriptome and epigenome analysis of engram cells: Next-generation sequencing technologies in memory research [J].
Fuentes-Ramos, Miguel ;
Alaiz-Noya, Marta ;
Barco, Angel .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2021, 127 :865-875
[27]   Projected network performance for multiple isotopes using next-generation xenon monitoring systems [J].
Eslinger, Paul W. ;
Ely, James H. ;
Lowrey, Justin D. ;
Miley, Harry S. .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2022, 251-252
[28]   Next-Generation Gene Therapy for Parkinson's Disease Using Engineered Viral Vectors [J].
Bjorklund, Tomas ;
Davidsson, Marcus .
JOURNAL OF PARKINSONS DISEASE, 2021, 11 :S209-S217
[29]   Cross frequency coupling in next generation inhibitory neural mass models [J].
Ceni, Andrea ;
Olmi, Simona ;
Torcini, Alessandro ;
Angulo-Garcia, David .
CHAOS, 2020, 30 (05)
[30]   En route to next-generation nerve repair: static passive magnetostimulation modulates neurite outgrowth [J].
Neuman, Katelyn ;
Zhang, Xiaoyu ;
Mills, Caroline ;
Koppes, Ryan ;
Lewis, Laura H. ;
Koppes, Abigail .
JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)