Heteroepitaxial 3C-SiC on Si (100) with flow-modulated carbonization process conditions

被引:5
作者
Li, Yun [1 ,2 ]
Zhao, Zhifei [2 ]
Yu, Le [1 ]
Wang, Yi [2 ]
Yin, Zhijun [2 ]
Li, Zhonghui [2 ]
Han, Ping [1 ]
机构
[1] Nanjing Univ, Coll Elect Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Elect Devices Inst, Sci & Technol Monolith Integrated Circuits & Modu, Nanjing 210016, Jiangsu, Peoples R China
关键词
Chemical vapor deposition processes; Semiconducting materials; Heteroepitaxial 3C-SiC films; Flow-modulated carbonization process; CHEMICAL-VAPOR-DEPOSITION; VOID FORMATION; THIN-FILM; DEGREES-C; GROWTH; SI(100); EPITAXY; DEVICES; SEMICONDUCTOR; PARAMETERS;
D O I
10.1016/j.jcrysgro.2018.09.037
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
A flow-modulated carbonization process is applied to grow a 3C-SiC thin film of high crystal quality on the Si (1 0 0) substrate using low pressure chemical vapor deposition. The flow-modulated carbonization was performed by flowing intermittent carbon-based precursor. The crystal quality of the so-obtained 3C-SiC is compared with that fabricated via the conventional carbonization process, using X-ray diffractometry and Raman spectra data, indicates a better crystal quality using this flow-modulated carbonization process. Moreover, Si out-diffusion from Si substrates is suppressed in the flow-modulated carbonization process, resulting in a reduced density of voids. Consequently, the flow-modulated carbonization process plays an active role in enhancing the crystal quality and reducing the void formation. This is the first report of the heteroepitaxial growth of 3C-SiC layers using the flow-modulated carbonization process.
引用
收藏
页码:114 / 116
页数:3
相关论文
共 24 条
[1]   Wafer curvature analysis in 3C-SiC layers grown on (0 0 1) and (1 1 1) Si substrates [J].
Bosi, Matteo ;
Attolini, Giovanni ;
Watts, Bernard E. ;
Rossi, Francesca ;
Ferrari, Claudio ;
Ferenc Riesz ;
Jiang, Liudi .
JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) :401-405
[2]   Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review [J].
Casady, JB ;
Johnson, RW .
SOLID-STATE ELECTRONICS, 1996, 39 (10) :1409-1422
[3]   High temperature electronics using SiC: Actual situation and unsolved problems [J].
Chelnokov, VE ;
Syrkin, AL .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 46 (1-3) :248-253
[4]   Growth of 3C-SiC on Si(100) by Low Pressure Chemical Vapor Deposition Using a Modified Four-Step Process [J].
Chen, W. -Y. ;
Chen, C. C. ;
Hwang, J. ;
Huang, C. -F. .
CRYSTAL GROWTH & DESIGN, 2009, 9 (06) :2616-2619
[5]   An atomic force microscopy and optical microscopy study of various shaped void formation and reduction in 3C-SiC films grown on Si using chemical vapor deposition [J].
Gupta, A. ;
Sengupta, J. ;
Jacob, C. .
THIN SOLID FILMS, 2008, 516 (08) :1669-1676
[6]   MIGRATION-ENHANCED EPITAXY OF GAAS AND ALGAAS [J].
HORIKOSHI, Y .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (06) :1032-1051
[7]   Effect of reduced pressure on 3C-SiC heteroepitaxial growth on Si by CVD [J].
Ishida, Yuuki ;
Takahashi, Tetsuo ;
Okumura, Hajime ;
Arai, Kazuo ;
Yoshida, Sadafumi .
CHEMICAL VAPOR DEPOSITION, 2006, 12 (8-9) :495-501
[8]   STERIC HINDRANCE EFFECTS IN ATOMIC LAYER EPITAXY OF INAS [J].
JEONG, WG ;
MENU, EP ;
DAPKUS, PD .
APPLIED PHYSICS LETTERS, 1989, 55 (03) :244-246
[9]   Void shapes in the Si(111) substrate at the heteroepitaxial thin film Si interface [J].
Jinschek, J ;
Kaiser, U ;
Richter, W .
SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 :521-524
[10]   Heteroepitaxial 3C-SiC on Si with Various Carbonization Process Conditions [J].
Kim, Byeung C. ;
Coy, John ;
Kim, Sangho ;
Capano, Michael A. .
JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (04) :581-585