High Capacity and High-Rate NASICON-Na3.75V1.25Mn0.75(PO4)3 Cathode for Na-Ion Batteries via Modulating Electronic and Crystal Structures

被引:101
作者
Ghosh, Subham [1 ,2 ]
Barman, Nabadyuti [1 ,2 ]
Mazumder, Madhulika [1 ,2 ,3 ]
Pati, Swapan K. [1 ,2 ,3 ]
Rousse, Gwenaelle [4 ,5 ,6 ]
Senguttuvan, Premkumar [1 ,2 ,7 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Sch Adv Mat, Bangalore 560064, Karnataka, India
[3] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, Karnataka, India
[4] Coll France, UMR 8260, Chim Solide & Energie, F-75231 Paris 05, France
[5] FR CNRS 3459, RS2E, F-80039 Amiens, France
[6] Sorbonne Univ, 4 Pl Jussieu, F-75005 Paris, France
[7] Jawaharlal Nehru Ctr Adv Sci Res Jakkur, Int Ctr Mat Sci, Bangalore 560064, Karnataka, India
关键词
Na-ion batteries; NASICON; phosphates; sodium superionic conductor; CARBON-COATED NA3V2(PO4)(3); TOTAL-ENERGY CALCULATIONS; HIGH-RATE PERFORMANCE; SODIUM; IMPROVEMENT; EXTRACTION; MN;
D O I
10.1002/aenm.201902918
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium superionic conductor (NASICON) cathodes are attractive for Na-ion battery applications as they exhibit both high structural stability and high sodium ion mobility. Herein, a comprehensive study is presented on the structural and electrochemical properties of the NASICON-Na3+yV2-yMny(PO4)(3) (0 <= y <= 1) series. A phase miscibility gap is observed at y = 0.5, defining two solid solution domains with low and high Mn contents. Although, members of each of these domains Na3.25V1.75Mn0.25(PO4)(3) and Na3.75V1.25Mn0.75(PO4)(3) reversibly exchange sodium ions with high structural integrity, the activity of the Mn3+/Mn2+ redox couple is found to be absent and present in the former and latter candidate, respectively. Galvanostatic cycling and rate studies reveal higher capacity and rate capability for the Na3.75V1.25Mn0.75(PO4)(3) cathode (100 and 89 mA h g(-1) at 1C and 5C rate, respectively) in the Na3+yV2-yMny(PO4)(3) series. Such a remarkable performance is attributed to optimum bottleneck size (approximate to 5 angstrom(2)) and modulated V- and Mn-redox centers as deduced from Rietveld analysis and DFT calculations, respectively. This study shows how important it is to manipulate electronic and crystal structures to achieve high-performance NASICON cathodes.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium-Ion Batteries [J].
Aragon, Maria J. ;
Lavela, Pedro ;
Ortiz, Gregorio F. ;
Tirado, Jose L. .
CHEMELECTROCHEM, 2015, 2 (07) :995-1002
[2]   Computational Studies of Electrode Materials in Sodium-Ion Batteries [J].
Bai, Qiang ;
Yang, Lufeng ;
Chen, Hailong ;
Mo, Yifei .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[3]   A NASICON-Type Positive Electrode for Na Batteries with High Energy Density: Na4MnV(PO4)3 [J].
Chen, Fan ;
Kovrugin, Vadim M. ;
David, Renald ;
Mentre, Olivier ;
Fauth, Francois ;
Chotard, Jean-Noel ;
Masquelier, Christian .
SMALL METHODS, 2019, 3 (04)
[4]   Hard Carbon Wrapped Na3V2(PO4)3@C Porous Composite Extending Cycling Lifespan for Sodium-Ion Batteries [J].
Chen, Lei ;
Zhao, Yanming ;
Liu, Shenghong ;
Zhao, Long .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (51) :44485-44493
[5]   Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution [J].
Chen, Shichuan ;
Kang, Zhixiong ;
Hu, Xin ;
Zhang, Xiaodong ;
Wang, Hui ;
Xie, Junfeng ;
Zheng, XuSheng ;
Yan, Wensheng ;
Pan, Bicai ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[6]   CRYSTAL-CHEMISTRY OF THE NA1+XZR2-XLX(PO4)3 (L = CR, IN, YB) SOLID-SOLUTIONS [J].
DELMAS, C ;
OLAZCUAGA, R ;
LEFLEM, G ;
HAGENMULLER, P ;
CHERKAOUI, F ;
BROCHU, R .
MATERIALS RESEARCH BULLETIN, 1981, 16 (03) :285-290
[7]   Na3MnZr(PO4)3: A High-Voltage Cathode for Sodium Batteries [J].
Gao, Hongcai ;
Seymour, Ieuan D. ;
Xin, Sen ;
Xue, Leigang ;
Henkelman, Graeme ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (51) :18192-18199
[8]   Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples [J].
Gao, Hongcai ;
Li, Yutao ;
Park, Kyusung ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6553-6559
[9]   An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na3MnTi(PO4)3 [J].
Gao, Hongcai ;
Goodenough, John B. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (41) :12768-12772
[10]   Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries [J].
Guin, M. ;
Tietz, F. .
JOURNAL OF POWER SOURCES, 2015, 273 :1056-1064